Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120895, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626487

RESUMEN

Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.


Asunto(s)
Carbono , Compostaje , Nitrógeno , Streptomyces , Streptomyces/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Estiércol , Bacillus/metabolismo , Bacterias/metabolismo
2.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132802

RESUMEN

Verpa spp. are potentially important economic fungi within Morchellaceae. However, fundamental research on their mating systems, the key aspects of their life cycle, remains scarce. Fungal sexual reproduction is chiefly governed by mating-type genes, where the configuration of these genes plays a pivotal role in facilitating the reproductive process. For this study, de novo assembly methodologies based on genomic data from Verpa spp. were employed to extract precise information on the mating-type genes, which were then precisely identified in silico and by amplifying their single-ascospore populations using MAT-specific primers. The results suggest that the MAT loci of the three tested strains of V. bohemica encompassed both the MAT1-1-1 and MAT1-2-1 genes, implying homothallism. On the other hand, amongst the three V. conica isolates, only the MAT1-1-1 or MAT1-2-1 genes were present in their MAT loci, suggesting that V. conica is heterothallic. Moreover, bioinformatic analysis reveals that the three tested V. bohemica strains and one V. conica No. 21110 strain include a MAT1-1-10 gene in their MAT loci, while the other two V. conica strains contained MAT1-1-11, exhibiting high amino acid identities with those from corresponding Morchella species. In addition, MEME analysis shows that a total of 17 conserved protein motifs are present among the MAT1-1-10 encoded protein, while the MAT1-1-11 protein contained 10. Finally, the mating type genes were successfully amplified in corresponding single-ascospore populations of V. bohemica and V. conica, further confirming their life-cycle type. This is the first report on the mating-type genes and mating systems of Verpa spp., and the presented results are expected to benefit further exploitation of these potentially important economic fungi.

3.
Plant Physiol Biochem ; 205: 108158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948976

RESUMEN

Tuber indicum is the most economically important member of Tuber, with the highest production and widest distribution in China. However, the overexploitation of immature ascocarps not only has driven wild resources of the species toward extinction, but also has caused enconomic losses and a decline in the reputation of T.indicum quality. In this study, stage-specific metabolites of T. indicum in relation to nutritional quality and the mechanism of their accumulations were explored by transcriptome and metabolome analysis at five harvest times, representing four maturation stages. A total of 663 compounds were identified in T. indicum ascocarps by a widely targeted metabolomic approach. Lipid compounds are the most prominent metabolites (18%) in our samples and also are higher accumulation at the immature stage than at mature stage, representing 30.16% differential accumulated metabolites in this stage. Levels of some of the amino acids, such as S-(methyl) glutathione, S-adenosylmethionine, which are known truffle aroma precursors, were increased at the mature stage. The gene expression level related to the biosynthesis of volatile organic compounds were verified by qPCR. This study contributes to the preliminary understanding of metabolites variations in T. indicum ascocarps during maturity for quality evaluation and truffle biology.


Asunto(s)
Ascomicetos , Metaboloma , Transcriptoma , Metaboloma/fisiología , Transcriptoma/genética , Ascomicetos/genética , Ascomicetos/metabolismo
4.
J Fungi (Basel) ; 9(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37888297

RESUMEN

Among Boletales, the family Boletaceae has the highest diversity worldwide. Additionally, this fungal group has great ecological relevance because it not only includes mainly ectomycorrhizal but also saprotrophic species. Furthermore, some species are used as food and have sociocultural and economic importance worldwide. In Mexico, the Boletaceae family boasts a substantial number of species, yet our understanding of these species remains far from comprehensive. In this work, by using macro- and micromorphological and phylogenetic analyses of DNA sequences from multi-gene analyses based on ITS, nrLSU, rpb1, rpb2, and tef1, we report five new species belonging to the genera Aureoboletus and Chalciporus: A. ayuukii and A. elvirae from a Quercus scytophylla forest, A. readii from a mixed forest, C. perezsilvae from cloud forest, and C. piedracanteadensis from both a mixed coniferous forest and a Quercus-Pinus forest. In Mexico, four species of Aureoboletus are used as a food source, and in this work, we add another one, A. readii, which is traditionally consumed by members of the Tlahuica-Pjiekakjoo culture, who are located in the central part of the country. This work contributes to our knowledge of two genera of Boletaceae in a geographical area that is scarcely studied, and thus, our understanding of its biocultural relevance is enriched.

5.
Mycology ; 14(3): 264-274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583453

RESUMEN

The genus Armillaria has high edible and medical values, with zones of antagonism often occurring when different species are paired in culture on agar media, while the antagonism-induced metabolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid-like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights into the mechanisms underlying fungal antagonists.

6.
J Fungi (Basel) ; 9(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37623626

RESUMEN

Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.

7.
Bioorg Med Chem Lett ; 92: 129389, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379957

RESUMEN

In this study, a series of nitric oxide (NO) -releasing 5-cyano-6-phenyl-2, 4-disubstituted pyrimidine derivatives were designed and synthesized. In the in vitro biological evaluation, compound 24l exhibited optimal antiproliferative activity against MGC-803 cells with the IC50 value of 0.95 µM, significantly better than that of the positive control 5-FU. In addition, preliminary mechanistic studies indicated that 24l inhibited colony formation and blocked MGC-803 cells in the G0/G1 phase. DAPI staining, reactive oxygen species and apoptosis assays demonstrated that 24l induced apoptosis of MGC-803 cells. Particularly, the most potent compound 24l produced the highest level of NO, and the antiproliferative activity was significantly reduced after preincubation with NO scavengers. In conclusion, compound 24l may be considered as a potential candidate antitumor agent.


Asunto(s)
Antineoplásicos , Óxido Nítrico , Óxido Nítrico/farmacología , Relación Estructura-Actividad , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Antineoplásicos/farmacología , Apoptosis , Pirimidinas/farmacología , Diseño de Fármacos , Estructura Molecular
8.
Front Plant Sci ; 14: 1134446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123847

RESUMEN

Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and ß-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.

9.
Magn Reson Chem ; 61(7): 443-447, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36960574

RESUMEN

A new amide tricholomine C was isolated from the dried fruiting bodies of Tricholoma bakamatsutake. Its structure was identified by a combination of nuclear magnetic resonance spectroscopic analysis and electronic circular dichroism (ECD) calculations. The ethyl alcohol crude extract and tricholomines A-C from T. bakamatsutake were evaluated for neuroprotective activities. Of these substances, the crude extract showed weak neurite outgrowth-promoting activity in rat pheochromocytoma (PC12) cells, as well as weak inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Ratas , Animales , Butirilcolinesterasa/análisis , Acetilcolinesterasa/análisis , Amidas/farmacología , Amidas/análisis , Cuerpos Fructíferos de los Hongos/química , Mezclas Complejas/análisis
10.
Microorganisms ; 11(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36838309

RESUMEN

Morels, which belong to the Ascomycete genus Morchella, are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels. However, ultrastructure characterization and physiological attributes of morel mitospores have received little attention. In this contribution, the mitospores of M. sextelata were successfully induced under laboratory conditions and their ultrastructure, occurrence, germination, physiological characteristics and mating type gene structure were studied. Mitospore production was closely related to aeration, nutrition and humidity conditions. The average germination rate of mitospores on different media and under various induction stimuli was very low, with an average of 1/100,000. Based on the ultrastructure characterization, low germination rate, growth rate decline, rapid aging and mating genotyping, it was concluded that the mitospores of M. sextelata had lost their conventional function as conidia and might act more as mate sperm-like (gamete) structures. Thus, this study contributed to a deeper understanding of the life cycle of the economically and ecologically important morel fungal group.

11.
Eur J Med Chem ; 249: 115124, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680986

RESUMEN

Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.


Asunto(s)
Virus del Sarcoma Murino de Kirsten , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Diferenciación Celular , Proliferación Celular , Mutación
12.
IEEE Trans Neural Netw Learn Syst ; 34(10): 6940-6954, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36094994

RESUMEN

Numerous electronic health records (EHRs) offer valuable opportunities for understanding patients' health status at different stages, namely health progression. Extracting the health progression patterns allows researchers to perform accurate predictive analysis of patient outcomes. However, most existing works on this task suffer from the following two limitations: 1) the diverse dependencies among heterogeneous medical entities are overlooked, which leads to the one-sided modeling of patients' status and 2) the extraction granularity of patient's health progression patterns is coarse, limiting the model's ability to accurately infer the patient's future status. To address these challenges, a pretrained Health progression network via heterogeneous medical information fusion, HealthNet, is proposed in this article. Specifically, a global heterogeneous graph in HealthNet is built to integrate heterogeneous medical entities and the dependencies among them. In addition, the proposed health progression network is designed to model hierarchical medical event sequences. By this method, the fine-grained health progression patterns of patients' health can be captured. The experimental results on real disease datasets demonstrate that HealthNet outperforms the state-of-the-art models for both diagnosis prediction task and mortality prediction task.


Asunto(s)
Registros Electrónicos de Salud , Redes Neurales de la Computación , Humanos
13.
Front Nutr ; 10: 1349429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38178974
14.
J Fungi (Basel) ; 8(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36547635

RESUMEN

Hydnobolites is an ectomycorrhizal fungal genus with hypogeous ascomata in the family Pezizaceae (Pezizales). Molecular analyses of Hydnobolites using both single (ITS) and concatenated gene datasets (ITS-nLSU) showed a total of 223 sequences, including 92 newly gained sequences from Chinese specimens. Phylogenetic results based on these two datasets revealed seven distinct phylogenetic clades. Among them, the ITS phylogenetic tree confirmed the presence of at least 42 phylogenetic species in Hydnobolites. Combined the morphological observations with molecular analyses, five new species of Hydnobolites translucidus sp. nov., H. subrufus sp. nov., H. lini sp. nov., H. sichuanensis sp. nov. and H. tenuiperidius sp. nov., and one new record species of H. cerebriformis Tul., were illustrated from Southwest China. Macro- and micro-morphological analyses of ascomata revealed a few, but diagnostic differences between the H. cerebriformis complex, while the similarities of the ITS sequences ranged from 94.4 to 97.2% resulting in well-supported clades.

15.
Front Microbiol ; 13: 973483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466665

RESUMEN

An introduction of exotic or non-native trees may fail due to a lack of suitable fungal partners. We planted exotic Pinus radiata in Xifeng, Guizhou Southwest China. Strategies to introduce P. radiata seedlings either colonized with an ectomycorrhizal fungus (EcMF), Lactarius deliciosus, or expect them to form familiar/new associations with local EcMF in a new habitat were studied to know how P. radiata could be successfully established over a period of 2.5 years. Plant height and needle nutrient acquisition, the persistence of the co-introduced L. deliciosus, and fungal community composition in rhizosphere soil and root tips were analyzed. In addition, a greenhouse bioassay experiment of local soil to assess the differences in the EcMF community between exotic and native pine seedlings was also conducted. The current results demonstrated that P. radiata could establish in the Xifeng plantation with or without co-introduced L. deliciosus. The co-introduced L. deliciosus might be naturalized with P. radiata in the new area since it has been fruited for 2 years with high relative abundance in mycorrhizosphere soil. L. deliciosus pre-colonization significantly altered the mycorrhizosphere fungal composition and it had a positive correlation with nitrogen acquisition of P. radiata. Host identity had no effect on fungal composition since exotic P. radiata and native P. massoniana recruited similar local fungal communities in early establishment or in plantation. The cosmopolitan species Suillus placidus, with high relative abundance, formed a familiar association with P. radiata. The greenhouse bioassay experiment further showed that Suillus sp. contributed relatively higher total extracellular enzymes by forming ectomycorrhizas with P. radiata and the same type of ectomycorrhiza of P. radiata and P. massoniana showed different enzymatic functions. Our study indicated that exotic P. radiata could be a suitable tree capable to get established successfully in the Xifeng plantation either by interaction with the co-introduced L. deliciosus or with a local EcMF, but we should be cautious about large-scale planting of P. radiata. L. deliciosus persisted in plantation and more attention should be paid to local EcMF community changes induced by the introduced L. deliciosus.

16.
J Environ Manage ; 324: 116377, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352711

RESUMEN

Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.


Asunto(s)
Compostaje , Micobioma , Animales , Femenino , Bovinos , Estiércol/microbiología , Suelo/química , Bacterias/genética
17.
J Fungi (Basel) ; 8(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36294672

RESUMEN

True morels (Morchella, Pezizales) are world-renowned edible mushrooms (ascocarps) that are widely demanded in international markets. Morchella has been successfully artificially cultivated since 2012 in China and is rapidly becoming a new edible mushroom industry occupying up to 16,466 hectares in the 2021-2022 season. However, nearly 25% of the total cultivation area has annually suffered from fungal diseases. While a variety of morel pathogenic fungi have been reported their epidemic characteristics are unknown, particularly in regional or national scales. In this paper, ITS amplicon sequencing and microscopic examination were concurrently performed on the morel ascocarp lesions from 32 sites in 18 provinces across China. Results showed that Diploöspora longispora (75.48%), Clonostachys solani (5.04%), Mortierella gamsii (0.83%), Mortierella amoeboidea (0.37%) and Penicillium kongii (0.15%) were the putative pathogenic fungi. The long, oval, septate conidia of D. longispora was observed on all ascocarps. Oval asexual spores and sporogenic structures, such as those of Clonostachys, were also detected in C. solani infected samples with high ITS read abundance. Seven isolates of D. longispora were isolated from seven selected ascocarps lesions. The microscopic characteristics of pure cultures of these isolates were consistent with the morphological characteristics of ascocarps lesions. Diploöspora longispora had the highest amplification abundance in 93.75% of the samples, while C. solani had the highest amplification abundance in six biological samples (6.25%) of the remaining two sampling sites. The results demonstrate that D. longispora is a major culprit of morel fungal diseases. Other low-abundance non-host fungi appear to be saprophytic fungi infecting after D. longispora. This study provides data supporting the morphological and molecular identification and prevention of fungal diseases of morel ascocarps.

18.
Mycology ; 13(3): 177-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938077

RESUMEN

The production of a distinct profile of volatile organic compounds plays a crucial role in the ecology of hypogeous Ascomycetes, and is also key to their gastronomic relevance. In this study, we explored the aroma components of two rarely investigated Chinese desert truffles, namely Mattirolomyces terfezioides and Choiromyces cerebriformis, using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Our investigation revealed the significant presence of sulphur-containing volatiles in the aroma of M. terfezioides but not in C. cerebriformis. We discussed available information on the distribution of these interesting truffles in China and their use as choice food by local people.

19.
J Ethnobiol Ethnomed ; 18(1): 55, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948993

RESUMEN

BACKGROUND: Yunnan is rich in fungal diversity and cultural diversity, but there are few researches on ethnomycology. In addition, extensive utilization of wild edible fungi (WEF), especially the ectomycorrhizal fungi, threatens the fungal diversity. Hence, this study aims to contribute to the ethnomycological knowledge in Pu'er Prefecture, Yunnan, China, including information on the fungal taxa presented in markets and natural habitats, with emphasis in ectomycorrhizal fungi (EMF). METHODS: Semi-structured interviews with mushroom vendors in markets and with mushroom collectors in natural habitats were conducted. Information related to local names, habitat, fruiting time, species identification, price, cooking methods and preservation methods of wild edible mushrooms were recorded. Wild edible fungi were collected from forests, and morphological and molecular techniques were used to identify fungal species. RESULTS: A total of 11 markets were visited during this study. The 101 species collected in the markets belonged to 22 families and 39 genera, and about 76% of them were EMF. A wealth of ethnomycological knowledge was recorded, and we found that participants in the 45-65 age group were able to judge mushroom species more accurately. Additionally, men usually had a deepest mushroom knowledge than women. A total of 283 species, varieties and undescribed species were collected from natural habitats, and about 70% of them were EMF. Mushroom species and recorded amounts showed correspondence between markets and the natural habitats on different months. CONCLUSION: The present study shows that Pu'er Prefecture is rich in local mycological knowledge and fungal diversity. However, it is necessary to continue the research of ethnomycological studies and to design and conduct dissemination of local knowledge in order to preserve it, since it currently remains mainly among the elderly population.


Asunto(s)
Agaricales , Micorrizas , Anciano , China , Ecosistema , Femenino , Bosques , Humanos , Conocimiento , Masculino
20.
Mitochondrial DNA B Resour ; 7(6): 1066-1068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801138

RESUMEN

The complete mitogenome of Polyozellus multiplex (Underw.) Murrill 1910, was first sequenced, assembled, and annotated in the present study. The mitogenome length was 47,054 bp with a GC content of 23.35%, including 14 conserved protein-coding genes, one ribosomal protein (RPS3), two DNA polymerases (DPO), two rRNA genes (RNS and RNL), and 24 transfer RNA (tRNA) genes. Phylogenetic analysis, based on a combined mitochondrial gene dataset from 17 taxa of four orders within the class Agaricomycetes, was conducted using maximum-likelihood (ML) and Bayesian inference (BI) methods. It is revealed that P. multiplex is closely related to Thelephora aurantiotincta Corner 1968, both of them have been clustered into Thelephorales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...