Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Imeta ; 3(1): e177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868514

RESUMEN

Highlights of ggVennDiagram include: (1) Subset/Region filling Venn diagram up to seven sets; (2) Upset plot with unlimited sets; (3) Venn Calculator for two or more sets; (4) Provide as R package, Shiny App, and TBtools plugin.

3.
Innovation (Camb) ; 5(3): 100627, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706956

RESUMEN

Neural fields can efficiently encode three-dimensional (3D) scenes, providing a bridge between two-dimensional (2D) images and virtual reality. This method becomes a trendsetter in bringing the metaverse into vivo life. It has initially captured the attention of macroscopic biology, as demonstrated by computed tomography and magnetic resonance imaging, which provide a 3D field of view for diagnostic biological images. Meanwhile, it has also opened up new research opportunities in microscopic imaging, such as achieving clearer de novo protein structure reconstructions. Introducing this method to the field of biology is particularly significant, as it is refining the approach to studying biological images. However, many biologists have yet to fully appreciate the distinctive meaning of neural fields in transforming 2D images into 3D perspectives. This article discusses the application of neural fields in both microscopic and macroscopic biological images and their practical uses in biomedicine, highlighting the broad prospects of neural fields in the future biological metaverse. We stand at the threshold of an exciting new era, where the advancements in neural field technology herald the dawn of exploring the mysteries of life in innovative ways.

4.
Front Immunol ; 15: 1369116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711505

RESUMEN

Objective: Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS. Methods: To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites. Results: A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored. Conclusion: In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.


Asunto(s)
Heces , Microbioma Gastrointestinal , Metaboloma , Probióticos , Espondilitis Anquilosante , Humanos , Espondilitis Anquilosante/microbiología , Espondilitis Anquilosante/metabolismo , Espondilitis Anquilosante/inmunología , Masculino , Femenino , Adulto , Heces/microbiología , Metagenómica/métodos , Persona de Mediana Edad , Estudios Prospectivos , Metabolómica , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología
5.
PLoS Comput Biol ; 20(2): e1011871, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330139

RESUMEN

Massive sequencing of SARS-CoV-2 genomes has urged novel methods that employ existing phylogenies to add new samples efficiently instead of de novo inference. 'TIPars' was developed for such challenge integrating parsimony analysis with pre-computed ancestral sequences. It took about 21 seconds to insert 100 SARS-CoV-2 genomes into a 100k-taxa reference tree using 1.4 gigabytes. Benchmarking on four datasets, TIPars achieved the highest accuracy for phylogenies of moderately similar sequences. For highly similar and divergent scenarios, fully parsimony-based and likelihood-based phylogenetic placement methods performed the best respectively while TIPars was the second best. TIPars accomplished efficient and accurate expansion of phylogenies of both similar and divergent sequences, which would have broad biological applications beyond SARS-CoV-2. TIPars is accessible from https://tipars.hku.hk/ and source codes are available at https://github.com/id-bioinfo/TIPars.


Asunto(s)
Genoma , Programas Informáticos , Filogenia , Funciones de Verosimilitud , SARS-CoV-2/genética
6.
J Genet Genomics ; 51(7): 762-768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38417547

RESUMEN

The molecular clock model is fundamental for inferring species divergence times from molecular sequences. However, its direct application may introduce significant biases due to sequencing errors, recombination events, and inaccurately labeled sampling times. Improving accuracy necessitates rigorous quality control measures to identify and remove potentially erroneous sequences. Furthermore, while not all branches of a phylogenetic tree may exhibit a clear temporal signal, specific branches may still adhere to the assumptions, with varying evolutionary rates. Supporting a relaxed molecular clock model better aligns with the complexities of evolution. The root-to-tip regression method has been widely used to analyze the temporal signal in phylogenetic studies and can be generalized for detecting other phylogenetic signals. Despite its utility, there remains a lack of corresponding software implementations for broader applications. To address this gap, we present shinyTempSignal, an interactive web application implemented with the shiny framework, available as an R package and publicly accessible at https://github.com/YuLab-SMU/shinyTempSignal. This tool facilitates the analysis of temporal and other phylogenetic signals under both strict and relaxed models. By extending the root-to-tip regression method to diverse signals, shinyTempSignal helps in the detection of evolving features or traits, thereby laying the foundation for deeper insights and subsequent analyses.


Asunto(s)
Filogenia , Programas Informáticos , Evolución Molecular
8.
Adv Sci (Weinh) ; 10(36): e2303753, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37991139

RESUMEN

The increased use of low-dose computed tomography screening has led to more frequent detection of early stage lung tumors, including minimally invasive adenocarcinoma (MIA). To unravel the intricacies of tumor cells and the immune microenvironment in MIA, this study performs a comprehensive single-cell transcriptomic analysis and profiles the transcriptomes of 156,447 cells from fresh paired MIA and invasive adenocarcinoma (IA) tumor samples, peripheral blood mononuclear cells, and adjacent normal tissue samples from three patients with synchronous multiple primary lung adenocarcinoma. This study highlights a connection and heterogeneity between the tumor ecosystem of MIA and IA. MIA tumor cells exhibited high expression of aquaporin-1 and angiotensin II receptor type 2 and a basal-like molecular character. Furthermore, it identifies that cathepsin B+ tumor-associated macrophages may over-activate CD8+ T cells in MIA, leading to an enrichment of granzyme K+ senescent CD8+ T cells, indicating the possibility of malignant progression behind the indolent appearance of MIA. These findings are further validated in 34 MIA and 35 IA samples by multiplexed immunofluorescence. These findings provide valuable insights into the mechanisms that maintain the indolent nature and prompt tumor progression of MIA and can be used to develop more effective therapeutic targets and strategies for MIA patients.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfocitos T CD8-positivos , Ecosistema , Leucocitos Mononucleares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/genética , Pulmón/patología , Perfilación de la Expresión Génica , Microambiente Tumoral/genética
9.
Influenza Other Respir Viruses ; 17(7): e13172, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37457646

RESUMEN

Age-associated immune changes and pre-existing influenza immunity are hypothesized to reduce influenza vaccine effectiveness in older adults, although the contribution of each factor is unknown. Here, we constructed influenza-specific IgG landscapes and determined baseline concentrations of cytokines typically associated with chronic inflammation in older adults (TNF-α, IL-10, IL-6, and IFN-γ) in 30 high and 29 low influenza vaccine responders (HR and LR, respectively). In a background of high H3 antibody titers, vaccine-specific H3, but not H1, antibody titers were boosted in LRs to titers comparable to HRs. Pre-vaccination concentrations of IL-10 were higher in LRs compared with HRs and inversely correlated with titers of pre-existing influenza antibodies. Baseline TNF-α concentrations were positively correlated with fold-increases in antibody titers in HRs. Our findings indicate that baseline inflammatory status is an important determinant for generating post-vaccination hemagglutinin-inhibition antibodies in older adults, and IgG responses can be boosted in the context of high pre-existing immunity.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Anciano , Gripe Humana/prevención & control , Interleucina-10 , Factor de Necrosis Tumoral alfa , Anticuerpos Antivirales , Inmunoglobulina G
10.
Gut Microbes ; 15(1): 2223349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37306408

RESUMEN

The gut metabolome acts as an intermediary between the gut microbiota and host, and has tremendous diagnostic and therapeutic potential. Several studies have utilized bioinformatic tools to predict metabolites based on the different aspects of the gut microbiome. Although these tools have contributed to a better understanding of the relationship between the gut microbiota and various diseases, most of them have focused on the impact of microbial genes on the metabolites and the relationship between microbial genes. In contrast, relatively little is known regarding the effect of metabolites on the microbial genes or the relationship between these metabolites. In this study, we constructed a computational framework of Microbe-Metabolite INteractions-based metabolic profiles Predictor (MMINP), based on the Two-Way Orthogonal Partial Least Squares (O2-PLS) algorithm to predict the metabolic profiles associated with gut microbiota. We demonstrated the predictive value of MMINP relative to that of similar methods. Additionally, we identified the features that would profoundly impact the prediction performance of data-driven methods (O2-PLS, MMINP, MelonnPan, and ENVIM), including the training sample size, host disease state, and the upstream data processing methods of the different technical platforms. We suggest that when using data-driven methods, similar host disease states and preprocessing methods, and a sufficient number of training samples are necessary to achieve accurate prediction.


MMINP fully considers internal and mutual correlations in metabolites and microbial genes and infers metabolite information through their real joint parts.The feasibility of predicting metabolic profiles using gut microbiome data should be based on the premise of similar host disease states, similar preprocessing methods, and a sufficient number of training samples.Although the accuracy of predicted specific metabolites is affected by multiple factors, the systematic conclusions presented for predicted metabolites at higher levels (e.g., class level) are accurate, allowing metabolite prediction to be applied to the discovery of potential metabolite markers.


Asunto(s)
Microbioma Gastrointestinal , Análisis de los Mínimos Cuadrados , Algoritmos , Biología Computacional , Metaboloma
12.
Innovation (Camb) ; 4(2): 100388, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36895758

RESUMEN

The data output from microbiome research is growing at an accelerating rate, yet mining the data quickly and efficiently remains difficult. There is still a lack of an effective data structure to represent and manage data, as well as flexible and composable analysis methods. In response to these two issues, we designed and developed the MicrobiotaProcess package. It provides a comprehensive data structure, MPSE, to better integrate the primary and intermediate data, which improves the integration and exploration of the downstream data. Around this data structure, the downstream analysis tasks are decomposed and a set of functions are designed under a tidy framework. These functions independently perform simple tasks and can be combined to perform complex tasks. This gives users the ability to explore data, conduct personalized analyses, and develop analysis workflows. Moreover, MicrobiotaProcess can interoperate with other packages in the R community, which further expands its analytical capabilities. This article demonstrates the MicrobiotaProcess for analyzing microbiome data as well as other ecological data through several examples. It connects upstream data, provides flexible downstream analysis components, and provides visualization methods to assist in presenting and interpreting results.

13.
Curr Protoc ; 2(10): e585, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36286622

RESUMEN

In many aspects of life, epigenetics, or the altering of phenotype without changes in sequences, play an essential role in biological function. A vast number of epigenomic datasets are emerging as a result of the advent of next-generation sequencing. Annotation, comparison, visualization, and interpretation of epigenomic datasets remain key aspects of computational biology. ChIPseeker is a Bioconductor package for performing these analyses among variable epigenomic datasets. The fundamental functions of ChIPseeker, including data preparation, annotation, comparison, and visualization, are explained in this article. ChIPseeker is a freely available open-source package that may be found at https://www.bioconductor.org/packages/ChIPseeker. © 2022 Wiley Periodicals LLC. Basic Protocol 1: ChIPseeker and epigenomic dataset preparation Basic Protocol 2: Annotation of epigenomic datasets Basic Protocol 3: Comparison of epigenomic datasets Basic Protocol 4: Visualization of annotated results Basic Protocol 5: Functional analysis of epigenomic datasets Basic Protocol 6: Genome-wide and locus-specific distribution of epigenomic datasets Basic Protocol 7: Heatmaps and metaplots of epigenomic datasets.


Asunto(s)
Epigenómica , Programas Informáticos , Epigenómica/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma
14.
Front Microbiol ; 13: 951774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051757

RESUMEN

The toxin-antitoxin (TA) system is a widely distributed group of genetic modules that play important roles in the life of prokaryotes, with mobile genetic elements (MGEs) contributing to the dissemination of antibiotic resistance gene (ARG). The diversity and richness of TA systems in Pseudomonas aeruginosa, as one of the bacterial species with ARGs, have not yet been completely demonstrated. In this study, we explored the TA systems from the public genomic sequencing data and genome sequences. A small scale of genomic sequencing data in 281 isolates was selected from the NCBI SRA database, reassembling the genomes of these isolates led to the findings of abundant TA homologs. Furthermore, remapping these identified TA modules on 5,437 genome/draft genomes uncovers a great diversity of TA modules in P. aeruginosa. Moreover, manual inspection revealed several TA systems that were not yet reported in P. aeruginosa including the hok-sok, cptA-cptB, cbeA-cbtA, tomB-hha, and ryeA-sdsR. Additional annotation revealed that a large number of MGEs were closely distributed with TA. Also, 16% of ARGs are located relatively close to TA. Our work confirmed a wealth of TA genes in the unexplored P. aeruginosa pan-genomes, expanded the knowledge on P. aeruginosa, and provided methodological tips on large-scale data mining for future studies. The co-occurrence of MGE, ARG, and TA may indicate a potential interaction in their dissemination.

15.
Front Oncol ; 12: 912694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957896

RESUMEN

Hepatocellular carcinoma (HCC) stem cells are regarded as an important part of individualized HCC treatment and sorafenib resistance. However, there is lacking systematic assessment of stem-like indices and associations with a response of sorafenib in HCC. Our study thus aimed to evaluate the status of tumor dedifferentiation for HCC and further identify the regulatory mechanisms under the condition of resistance to sorafenib. Datasets of HCC, including messenger RNAs (mRNAs) expression, somatic mutation, and clinical information were collected. The mRNA expression-based stemness index (mRNAsi), which can represent degrees of dedifferentiation of HCC samples, was calculated to predict drug response of sorafenib therapy and prognosis. Next, unsupervised cluster analysis was conducted to distinguish mRNAsi-based subgroups, and gene/geneset functional enrichment analysis was employed to identify key sorafenib resistance-related pathways. In addition, we analyzed and confirmed the regulation of key genes discovered in this study by combining other omics data. Finally, Luciferase reporter assays were performed to validate their regulation. Our study demonstrated that the stemness index obtained from transcriptomic is a promising biomarker to predict the response of sorafenib therapy and the prognosis in HCC. We revealed the peroxisome proliferator-activated receptor signaling pathway (the PPAR signaling pathway), related to fatty acid biosynthesis, that was a potential sorafenib resistance pathway that had not been reported before. By analyzing the core regulatory genes of the PPAR signaling pathway, we identified four candidate target genes, retinoid X receptor beta (RXRB), nuclear receptor subfamily 1 group H member 3 (NR1H3), cytochrome P450 family 8 subfamily B member 1 (CYP8B1) and stearoyl-CoA desaturase (SCD), as a signature to distinguish the response of sorafenib. We proposed and validated that the RXRB and NR1H3 could directly regulate NR1H3 and SCD, respectively. Our results suggest that the combined use of SCD inhibitors and sorafenib may be a promising therapeutic approach.

16.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35671504

RESUMEN

The identification of the conserved and variable regions in the multiple sequence alignment (MSA) is critical to accelerating the process of understanding the function of genes. MSA visualizations allow us to transform sequence features into understandable visual representations. As the sequence-structure-function relationship gains increasing attention in molecular biology studies, the simple display of nucleotide or protein sequence alignment is not satisfied. A more scalable visualization is required to broaden the scope of sequence investigation. Here we present ggmsa, an R package for mining comprehensive sequence features and integrating the associated data of MSA by a variety of display methods. To uncover sequence conservation patterns, variations and recombination at the site level, sequence bundles, sequence logos, stacked sequence alignment and comparative plots are implemented. ggmsa supports integrating the correlation of MSA sequences and their phenotypes, as well as other traits such as ancestral sequences, molecular structures, molecular functions and expression levels. We also design a new visualization method for genome alignments in multiple alignment format to explore the pattern of within and between species variation. Combining these visual representations with prime knowledge, ggmsa assists researchers in discovering MSA and making decisions. The ggmsa package is open-source software released under the Artistic-2.0 license, and it is freely available on Bioconductor (https://bioconductor.org/packages/ggmsa) and Github (https://github.com/YuLab-SMU/ggmsa).


Asunto(s)
Genoma , Programas Informáticos , Secuencia de Aminoácidos , Posición Específica de Matrices de Puntuación , Alineación de Secuencia
18.
Bioinformatics ; 38(10): 2959-2960, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561164

RESUMEN

SUMMARY: When investigating gene expression profiles, determining important directed edges between genes can provide valuable insights in addition to identifying differentially expressed genes. In the subsequent functional enrichment analysis (EA), understanding how enriched pathways or genes in the pathway interact with one another can help infer the gene regulatory network (GRN), important for studying the underlying molecular mechanisms. However, packages for easy inference of the GRN based on EA are scarce. Here, we developed an R package, CBNplot, which infers the Bayesian network (BN) from gene expression data, explicitly utilizing EA results obtained from curated biological pathway databases. The core features include convenient wrapping for structure learning, visualization of the BN from EA results, comparison with reference networks, and reflection of gene-related information on the plot. As an example, we demonstrate the analysis of bladder cancer-related datasets using CBNplot, including probabilistic reasoning, which is a unique aspect of BN analysis. We display the transformability of results obtained from one dataset to another, the validity of the analysis as assessed using established knowledge and literature, and the possibility of facilitating knowledge discovery from gene expression datasets. AVAILABILITY AND IMPLEMENTATION: The library, documentation and web server are available at https://github.com/noriakis/CBNplot. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Teorema de Bayes , Biblioteca de Genes
19.
Front Microbiol ; 13: 723791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495685

RESUMEN

Preoperative diagnosis of fracture-related infection (FRI) is difficult for patients without obvious signs of infection. However, specific profiles of gut microbiota may be used as a potential diagnostic tool for FRI as suggested by a previous study. The fecal microbiome was compared between 20 FRI patients (FRI group), 18 fracture healed patients (FH group), and 12 healthy controls (HC group) included after collection of fecal samples and evaluation. The α and ß diversity indices were used to characterize the fecal microbiome. Dysbiosis indexes were constructed based on the characteristic high-dimensional biomarkers identified in the fecal microbiota from the three groups by linear discriminant analysis and generalized linear model analysis to quantify the dysbiosis of fecal microbiota. The effectiveness of α and ß diversity indices and dysbiosis indexes was assessed in distinguishing the fecal microbiome among the three groups. The influences of serum inflammatory factors on gut microbiota were also addressed. The α diversity indices were significantly different between the three groups, the highest in HC group and the lowest in FRI group (P < 0.05). The ß diversity indices showed significant phylogenetic dissimilarity of gut microbiome composition among the three groups (P < 0.001). The dysbiosis indexes were significantly higher in FRI group than in FH and HC groups (P < 0.001). The area under Receiver operating characteristic curve showed the characteristics of gut microbiota and the gut microbiota was found as effective in distinguishing the three groups. The dysbiosis in the FRI patients was associated with systemic inflammatory factors. In addition, significant differences in the gut microbiota were not observed between the FRI patients versus without sinus tract or pus before operation. Since FRI patients, with or without sinus tract or pus, have a characteristic profile of gut microbiota, their gut microbiota may be used as an auxiliary diagnostic tool for suspected FRI.

20.
Imeta ; 1(4): e56, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38867905

RESUMEN

While phylogenetic trees and associated data have been getting easier to generate, it has been difficult to reuse, combine, and synthesize the information they provided, because published trees are often only available as image files and associated data are often stored in incompatible formats. To increase the reproducibility and reusability of phylogenetic data, the ggtree object was designed for storing phylogenetic tree and associated data, as well as visualization directives. The ggtree object itself is a graphic object and can be rendered as a static image. More importantly, the input tree and associated data that are used in visualization can be extracted from the graphic object, making it an ideal data structure for publishing tree (image, tree, and data in one single object) and thus enhancing data reuse and analytical reproducibility, as well as facilitating integrative and comparative studies. The ggtree package is freely available at https://www.bioconductor.org/packages/ggtree.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...