Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clinics (Sao Paulo) ; 79: 100386, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38815541

RESUMEN

OBJECTIVE: To investigate the influence of aerobic exercise on myocardial injury, NF-B expression, glucolipid metabolism and inflammatory factors in rats with Coronary Heart Disease (CHD) and explore the possible causative role. METHODS: 45 Sprague Dawley® rats were randomized into model, control and experimental groups. A high-fat diet was adopted for generating a rat CHD model, and the experimental group was given a 4-week aerobic exercise intervention. ECG was utilized to evaluate the cardiac function of the rats; HE staining to evaluate the damage of myocardial tissue; TUNEL staining to evaluate cardiomyocyte apoptosis level; ELISA to assay the contents of inflammatory factors and glucolipid metabolism in cardiomyocytes; qPCR to assay IB- and NF-B mRNA expression; Western-blot to assay the apoptosis-related proteins and NF-B signaling pathway-related proteins expressions in myocardial tissue. RESULTS: In contrast to the model group, aerobic exercise strongly improved the rat's cardiac function and glucolipid metabolism (p < 0.01), enhanced IL-10 content, Bcl-2/Bax level as well as IB- protein and mRNA expression (p < 0.01), and reduced myocardial injury and cardiomyocyte apoptosis, the contents of IL-6, IL-1 and TNF-, Caspase 3 level, NF-B mRNA and protein expression and p-p38 and p-STAT3 expressions (p < 0.01). CONCLUSION: Aerobic exercise can not only effectively reduce myocardial injury, the release of inflammatory factors and NF-B expression in CHD rats, but also improve cardiac function and glucolipid metabolism. Its mechanism is likely to be related to the inhibition of the NF-B signaling pathway.

2.
Insect Sci ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494587

RESUMEN

Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.

3.
BMC Infect Dis ; 24(1): 206, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360539

RESUMEN

BACKGROUND: Fear of a global public health issue and fresh infection wave in the persistent COVID-19 pandemic has been enflamed by the appearance of the novel variant Omicron BF.7 lineage. Recently, it has been seeing the novel Omicron subtype BF.7 lineage has sprawled exponentially in Hohhot. More than anything, risk stratification is significant to ascertain patients infected with COVID-19 who the most need in-hospital or in-home management. The study intends to understand the clinical severity and epidemiological characteristics of COVID-19 Omicron subvariant BF.7. lineage via gathering and analyzing the cases with Omicron subvariant in Hohhot, Inner Mongolia. METHODS: Based upon this, we linked variant Omicron BF.7 individual-level information including sex, age, symptom, underlying conditions and vaccination record. Further, we divided the cases into various groups and assessed the severity of patients according to the symptoms of patients with COVID-19. Clinical indicators and data might help to predict disadvantage outcomes and progression among Omicron BF.7 patients. RESULTS: In this study, in patients with severe symptoms, some indicators from real world data such as white blood cells, AST, ALT and CRE in patients with Omicron BF.7 in severe symptoms were significantly higher than mild and asymptomatic patients, while some indicators were significantly lower. CONCLUSIONS: Above results suggested that the indicators were associated with ponderance of clinical symptoms. Our survey emphasized the value of timely investigations of clinical data obtained by systemic study to acquire detailed information.


Asunto(s)
COVID-19 , Humanos , Estudios Retrospectivos , COVID-19/epidemiología , Pandemias , China/epidemiología , Salud Pública
4.
Front Plant Sci ; 14: 1268511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046612

RESUMEN

The cultivated soybean (Glycine max (L.) Merrill) is domesticated from wild soybean (Glycine soja) and has heavier seeds with a higher oil content than the wild soybean. In this study, we identified a novel candidate gene associated with SW using a genome-wide association study (GWAS). The candidate gene GmWRI14-like was detected by GWAS analysis in three consecutive years. By constructing transgenic soybeans overexpressing the GmWRI14-like gene and gmwri14-like soybean mutants, we found that overexpression of GmWRI14-like increased the SW and increased total fatty acid content. We then used RNA-seq and qRT-PCR to identify the target genes directly or indirectly regulated by GmWRI14-like. Transgenic soyabeans overexpressing GmWRI14-like showed increased accumulation of GmCYP78A50 and GmCYP78A69 than non-transgenic soybean lines. Interestingly, we also found that GmWRI14-like proteins could interact with GmCYP78A69/GmCYP78A50 using yeast two-hybrid and bimolecular fluorescence complementation. Our results not only shed light on the genetic architecture of cultivated soybean SW, but also lays a theoretical foundation for improving the SW and oil content of soybeans.

5.
PeerJ ; 11: e16138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933254

RESUMEN

Linolenic acid (LA) has poor oxidative stability since it is a polyunsaturated fatty acid. Soybean oil has a high LA content and thus has poor oxidative stability. To identify candidate genes that affect the linolenic acid (LA) content in soybean seeds, a genome-wide association study (GWAS) was performed with 1,060 soybean cultivars collected in China between 2019-2021 and which LA content was measured using matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). A candidate gene, GmWRI14, encoding an APETALA2 (AP2)-type transcription factor, was detected by GWAS in cultivars from all three study years. Multiple sequence alignments showed that GmWRI14 belongs to the plant WRI1 family. The fatty acid contents of different soybean lines were evaluated in transgenic lines with a copy of GmWRI14, control lines without GmWRI14, and the gmwri14 mutant. MALDI-TOF IMS revealed that GmWRI14 transgenic soybeans had a lower LA content with a significant effect on seed size and shape, whereas gmwri14 mutants had a higher LA content. compared to control. The RNA-seq results showed that GmWRI14 suppresses GmFAD3s (GmFAD3B and GmFAD3C) and GmbZIP54 expression in soybean seeds, leading to decreased LA content. Based on the RNA-seq data, yeast one-hybrid (Y1H) and qRT-PCR were performed to confirm the transcriptional regulation of FAD3s by GmWRI14. Our results suggest that FAD3 is indirectly regulated by GmWRI14, representing a new molecular mechanism of fatty acid biosynthesis, in which GmWRI14 regulates LA content in soybean seeds.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/química , Ácido alfa-Linolénico/análisis , RNA-Seq , Ácidos Grasos/análisis , Semillas/química
6.
Front Microbiol ; 14: 1281381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840725

RESUMEN

Bacterial wilt disease caused by Ralstonia solanacearum is a widespread, severe plant disease. Tomato (Solanum lycopersicum), one of the most important vegetable crops worldwide, is particularly susceptible to this disease. Biological control offers numerous advantages, making it a highly favorable approach for managing bacterial wilt. In this study, the results demonstrate that treatment with the biological control strain Bacillus subtilis R31 significantly reduced the incidence of tomato bacterial wilt. In addition, R31 directly inhibits the growth of R. solanacearum, and lipopeptides play an important role in this effect. The results also show that R31 can stably colonize the rhizosphere soil and root tissues of tomato plants for a long time, reduce the R. solanacearum population in the rhizosphere soil, and alter the microbial community that interacts with R. solanacearum. This study provides an important theoretical basis for elucidating the mechanism of B. subtilis as a biological control agent against bacterial wilt and lays the foundation for the optimization and promotion of other agents such as R31.

7.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894960

RESUMEN

Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.


Asunto(s)
Arabidopsis , Lolium , Arabidopsis/metabolismo , Lolium/genética , Resistencia a la Sequía , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37596715

RESUMEN

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Musa , Animales , Humanos , Filogenia , ARN Ribosómico 16S/genética , China , Klebsiella/genética , Endófitos
9.
Nanomedicine (Lond) ; 18(9): 755-767, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37306248

RESUMEN

Aim: STING agonists in immunotherapy show great promise and are currently in clinical trials. Combinations of STING agonists with other therapies remain underexplored. This study aimed to combine STING agonist-mediated immunotherapy with photodynamic therapy to treat breast cancer. Methods: STING agonist (ADU-S100)-functionalized porphyrin-based nanoparticles (NP-AS) were prepared and their antitumor properties in terms of cell apoptosis/necrosis and immune activation in triple-negative breast cancer were evaluated. Results: NP-AS induced tumor cell apoptosis/necrosis, activated the innate immune response and exhibited useful antitumor effects. Conclusion: NP-AS effectively treated breast cancer.


Asunto(s)
Nanopartículas , Neoplasias , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inmunoterapia , Necrosis , Neoplasias/terapia
10.
iScience ; 26(6): 106819, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250797

RESUMEN

Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.

11.
PeerJ ; 11: e14967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883062

RESUMEN

During colonization of soil and plants, biocontrol bacteria can effectively regulate the physiological metabolism of plants and induce disease resistance. To illustrate the influence of Bacillus subtilis R31 on the quality, transcriptome and metabolome of sweet corn, field studies were conducted at a corn experimental base in Zhuhai City. The results show that, after application of B. subtilis R31, sweet corn was more fruitful, with a 18.3 cm ear length, 5.0 cm ear diameter, 0.4 bald head, 403.9 g fresh weight of single bud, 272.0 g net weight of single ear, and 16.5 kernels sweetness. Combined transcriptomic and metabolomic analyses indicate that differentially expressed genes related to plant-pathogen interactions, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and flavonoid biosynthesis were significantly enriched. Moreover, the 110 upregulated DAMs were mainly involved in the flavonoid biosynthesis and flavone and flavonol biosynthesis pathways. Our study provides a foundation for investigating the molecular mechanisms by which biocontrol bacteria enhance crop nutrition and taste through biological means or genetic engineering at the molecular level.


Asunto(s)
Bacillus subtilis , Transcriptoma , Bacillus subtilis/genética , Endófitos/genética , Zea mays/genética , Metaboloma , Verduras
12.
J Cell Physiol ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790954

RESUMEN

Bacillus species act as plant growth-promoting rhizobacteria (PGPR) that can produce a large number of bioactive metabolites. Bacillaene, a linear polyketide/nonribosomal peptide produced by Bacillus strains, is synthesized by the trans-acyltransferase polyketide synthetase. The complexity of the chemical structure, particularity of biosynthesis, potent bioactivity, and the important role of competition make Bacillus an ideal antibiotic weapon to resist other microbes and maintain the optimal rhizosphere environment. This review provides an updated view of the structural features, biological activity, biosynthetic regulators of biosynthetic pathways, and the important competitive role of bacillaene during Bacillus survival.

13.
Environ Pollut ; 317: 120845, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36496063

RESUMEN

Efficient degradation of residual antibiotics in livestock and poultry feces by black soldier flies (BSFs) has been widely reported. Nevertheless, the effects of widely detected microplastics in feces on the dynamic reduction of antibiotics and the transfer of gut bacterial resistome remain unclear. In this study, red fluorescence-labeled microplastics are observed to be abundantly distributed in BSFs gut, which caused epithelial cell damage along with gut peristalsis and friction, thereby releasing reactive oxygen species and activating the antioxidant enzyme system. In addition, they result in not only in inflammatory cytokine release to induce gut inflammation, but fecal hardening because of mucus released from the BSFs, thereby hindering organic mineralization and antibiotic degradation. Besides, the gut pathogenic bacteria easily obtain growth energy and crowded out ecological niches by reducing nitrate produced by inflammatory host cells to nitrite with nitrate reductase. Consequently, linear discriminant analysis effect size and detrended correspondence analysis found that microplastic intake significantly reshape the microbial community structure and cause the significant reduction of several important organic-decomposing bacteria and probiotics (e.g., Pseudomonadales, Coriobacteriales, Lachnospirales, and Ruminococcaceae). In addition, a large number of pathogenic bacteria (e.g., Enterococcaceae, Hungateiclostridiaceae, and Clostridia) are enriched in feces and BSFs gut. Weighted correlation network analysis and bubble diagram analysis indicate that microplastic intake intensified gut colonization of pathogenic bacteria carrying antibiotic-resistant genes/mobile genetic elements, driving the bloom of antibiotic resistance in transformed fecal piles. Therefore, microplastics in feces should be isolated as much as possible before insect transformation.


Asunto(s)
Dípteros , Microplásticos , Animales , Plásticos/farmacología , Ganado , Farmacorresistencia Microbiana/genética , Bacterias , Antibacterianos/toxicidad , Heces/microbiología , Genes Bacterianos
14.
Genes Genomics ; 45(1): 123-134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670995

RESUMEN

BACKGROUND: Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE: The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS: An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS: The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION: This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.


Asunto(s)
COVID-19 , Pogostemon , Ralstonia solanacearum , Ralstonia solanacearum/genética , Pogostemon/genética , Pogostemon/microbiología , COVID-19/genética , Virulencia/genética , Genes Bacterianos
15.
PLoS Pathog ; 18(12): e1011027, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469533

RESUMEN

Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen. Previous studies showed that P. aeruginosa T3SS is regulated by various environmental cues such as calcium concentration and the host signal spermidine. However, how T3SS is regulated and expressed particularly under the ever-changing environmental conditions remains largely elusive. In this study, we reported that a tRNA modification enzyme PA3980, designated as MiaB, positively regulated T3SS gene expression in P. aeruginosa and was essential for the induced cytotoxicity of human lung epithelial cells. Further genetic assays revealed that MiaB promoted T3SS gene expression by repressing the LadS-Gac/Rsm signaling pathway and through the T3SS master regulator ExsA. Interestingly, ladS, gacA, rsmY and rsmZ in the LadS-Gac/Rsm signaling pathway seemed potential targets under the independent regulation of MiaB. Moreover, expression of MiaB was found to be induced by the cAMP-dependent global regulator Vfr as well as the spermidine transporter-dependent signaling pathway and thereafter functioned to mediate their regulation on the T3SS gene expression. Together, these results revealed a novel regulatory mechanism for MiaB, with which it integrates different environmental cues to modulate T3SS gene expression in this important bacterial pathogen.


Asunto(s)
Pseudomonas aeruginosa , Sistemas de Secreción Tipo III , Humanos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Señales (Psicología) , Espermidina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN de Transferencia/metabolismo
16.
Heliyon ; 8(11): e11505, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36419653

RESUMEN

Biotechnologically useful yeast strains have been receiving important attention worldwide for the demand of a wide range of industries. Rhodotorula mucilaginosa is recognized as a biotechnologically important yeast that has gained great interest as a promising platform strain, owing to the diverse substrate appetites, robust stress resistance, and other gratifying features. Due to its attractive properties, R. mucilaginosa has been regarded as an excellent candidate for the biorefinery of carotenoids, lipids, enzymes, and other functional bioproducts by utilizing low-cost agricultural waste materials as substrates. These compounds have aroused great interest as the potential alternative sources of health-promoting food products, substrates for so-called third-generation biodiesel, and dyes or functional ingredients for cosmetics. Furthermore, the use of R. mucilaginosa has rapidly increased as a result of advancements in fermentation for enhanced production of these valuable bioactive compounds. This review focuses on R. mucilaginosa in these advancements and summarizes its potential prospects as alternative sources of natural bioproducts.

17.
Plant Physiol ; 190(3): 2045-2058, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36005925

RESUMEN

Fine tuning the progression of leaf senescence is important for plant fitness in nature, while the "staygreen" phenotype with delayed leaf senescence has been considered a valuable agronomic trait in crop genetic improvement. In this study, a switchgrass (Panicum virgatum L.) CCCH-type Zinc finger gene, Strong Staygreen (PvSSG), was characterized as a suppressor of leaf senescence as overexpression or suppression of the gene led to delayed or accelerated leaf senescence, respectively. Transcriptomic analysis marked that chlorophyll (Chl) catabolic pathway genes were involved in the PvSSG-regulated leaf senescence. PvSSG was identified as a nucleus-localized protein with no transcriptional activity. By yeast two-hybrid screening, we identified its interacting proteins, including a pair of paralogous transcription factors, PvNAP1/2 (NAC-LIKE, ACTIVATED BY AP3/PI). Overexpression of PvNAPs led to precocious leaf senescence at least partially by directly targeting and transactivating Chl catabolic genes to promote Chl degradation. PvSSG, through protein-protein interaction, repressed the DNA-binding efficiency of PvNAPs and alleviated its transactivating effect on downstream genes, thereby functioning as a "brake" in the progression of leaf senescence. Moreover, overexpression of PvSSG resulted in up to 47% higher biomass yield and improved biomass feedstock quality, reiterating the importance of leaf senescence regulation in the genetic improvement of switchgrass and other feedstock crops.


Asunto(s)
Panicum , Panicum/genética , Panicum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Senescencia de la Planta , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo , ADN/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Appl Environ Microbiol ; 88(15): e0032522, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876567

RESUMEN

Quorum sensing (QS) is a widely conserved bacterial regulatory mechanism that relies on production and perception of autoinducing chemical signals to coordinate diverse cooperative activities, such as virulence, exoenzyme secretion, and biofilm formation. In Ralstonia solanacearum, a phytopathogen causing severe bacterial wilt diseases in many plant species, previous studies identified the PhcBSR QS system, which plays a key role in regulation of its physiology and virulence. In this study, we found that R. solanacearum strain EP1 contains the genes encoding uncharacterized LuxI/LuxR (LuxI/R) QS homologues (RasI/RasR [designated RasI/R here]). To determine the roles of the RasI/R system in strain EP1, we constructed a specific reporter for the signals catalyzed by RasI. Chromatography separation and structural analysis showed that RasI synthesized primarily N-(3-hydroxydodecanoyl)-homoserine lactone (3-OH-C12-HSL). In addition, we showed that the transcriptional expression of rasI is regulated by RasR in response to 3-OH-C12-HSL. Phenotype analysis unveiled that the RasI/R system plays a critical role in modulation of cellulase production, motility, biofilm formation, oxidative stress response, and virulence of R. solanacearum EP1. We then further characterized this system by determining the RasI/R regulon using transcriptome sequencing (RNA-seq) analysis, which showed that this newly identified QS system regulates the transcriptional expression of over 154 genes associated with bacterial physiology and pathogenic properties. Taken together, the findings from this study present an essential new QS system in regulation of R. solanacearum physiology and virulence and provide new insight into the complicated regulatory mechanisms and networks in this important plant pathogen. IMPORTANCE Quorum sensing (QS) is a key regulator of virulence factors in many plant-pathogenic bacteria. Previous studies unveiled two QS systems (i.e., PhcBSR and SolI/R) in several R. solanacearum strains. The PhcBSR QS system is known for its key roles in regulation of bacterial virulence, and the LuxI/LuxR (SolI/R) QS system appears dispensable for pathogenicity in a number of R. solanacearum strains. In this study, a new functional QS system (i.e., RasI/R) was identified and characterized in R. solanacearum strain EP1 isolated from infected eggplants. Phenotype analyses showed that the RasI/R system plays an important role in regulation of a range of biological activities associated with bacterial virulence. This QS system produces and responds to the QS signal 3-OH-C12-HSL and hence regulates critical bacterial abilities in survival and infection. To date, multiple QS signaling circuits in R. solanacearum strains are still not well understood. Our findings from this study provide new insight into the complicated QS regulatory networks that govern the physiology and virulence of R. solanacearum and present a valid target and clues for the control and prevention of bacterial wilt diseases.


Asunto(s)
Percepción de Quorum , Ralstonia solanacearum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum/genética , Transactivadores/genética , Virulencia
19.
Food Res Int ; 156: 111158, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651024

RESUMEN

Carotenoids are a group of versatile isoprenoid pigments widely utilized in the food, pharmaceutical and cosmetic industries. Rhodosporidiobolus colostri is a cold-adapted yeast that has piqued interest as a natural source of microbial carotenoids, including ß-carotene, torulene and torularhodin. Here, the effect of low temperature on carotenoid production in R. colostri was investigated. The results indicated that the total carotenoid production was significantly increased at the low temperature (16 ℃) treatment (29.016 mg/L) as compared to control (25 ℃) (17.147 mg/L) after 5 days of cultivation. Among them, the increase in ß-carotene and torulene serve as the main contributors to the improvement in total carotenoid production. Integrative analyses of the transcriptome and metabolome suggested that the up-regulation of the terpenoid backbone biosynthesis pathway and the down-regulation of the TCA cycle flux allow more acetyl-CoA to be diverted to carotenogenesis, which might be the reason for the increased production of ß-carotene and torulene in R. colostri under low temperature treatment. Our results presented herein should not only provide an effective strategy for increasing total carotenoids production in R. colostri, but lay the molecular groundwork to further facilitate genetic engineering to enhance the yield of certain carotenoids.


Asunto(s)
Transcriptoma , beta Caroteno , Basidiomycota , Carotenoides/metabolismo , Temperatura , beta Caroteno/metabolismo
20.
AMB Express ; 12(1): 54, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551524

RESUMEN

Myxobacteria, as predatory bacteria, have good application potential in the biocontrol of pathogenic microorganisms. Extracellular enzymes are thought to play an important role in their predation and also provide resources for discovering new antibacterial molecules. We previously isolated a myxobacterium, Corallococcus silvisoli c25j21 GDMCC 1.1387, which is predatory to plant pathogenic bacteria. In this study, we identified an endolysin-like GH19 glycoside hydrolase, C25GH19B, from the genome of c25j21. After its heterologous expression and purification from E. coli, the enzymatic properties of C25GH19B were characterized. C25GH19B showed lysozyme activity with the optimal reaction conditions at 40 °C and pH 4.5-5.0. Moreover, C25GH19B showed bacteriolytic activity against both Gram-positive and Gram-negative plant pathogenic bacteria. Our research provides not only a candidate enzyme for the development of novel biocontrol agents but also an experimental basis for further study on the function and mechanisms of extracellular enzymes in myxobacterial predation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...