Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 20(9): 15672-15707, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37919985

RESUMEN

The vehicle routing problem (VRP) is a highly significant and extensively studied issue in post-disaster rescue. In recent years, there has been widespread utilization of helicopters for post-disaster rescue. However, efficiently dispatching helicopters to reach rescue sites in post-disaster rescue is a challenge. To address this issue, this study models the issue of dispatching helicopters as a specific variant of the VRP with time window (VRPTW). Considering that the VRPTW is an NP-hard problem, the genetic algorithm (GA) as one of the prominent evolutionary algorithms with robust optimization capabilities, is a good candidate to deal with this issue. In this study, an improved GA with a local search strategy and global search strategy is proposed. To begin, a cooperative initialization strategy is proposed to generate an initial population with high quality and diversity. Subsequently, a local search strategy is presented to improve the exploitation ability. Additionally, a global search strategy is embedded to enhance the global search performance. Finally, 56 instances extended from Solomon instances are utilized for conducting simulation tests. The simulation results indicate that the average relative percentage increase (RPI) of the distance travelled by helicopters as obtained by the proposed algorithm is 0.178, 0.027, 0.075 and 0.041 times smaller than the average RPIs obtained by the tabu search algorithm, ant colony optimization algorithm, hybrid GA and simulated annealing algorithm, respectively. Simulation results reveal that the proposed algorithm is more efficient and effective for solving the VRPTW to reduce the driving distance of the helicopters in post-disaster rescue.

2.
ACS Appl Mater Interfaces ; 14(45): 51253-51264, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36322068

RESUMEN

With the development of flexible surface-enhanced Raman spectroscopy (SERS) substrates that can realize rapid in situ detection, the SERS technique accompanied by miniaturized Raman spectrometers holds great promise for point-of-care testing (POCT). For an in situ detection strategy, constructing high-performance flexible and transparent SERS substrates through a facile and cost-effective fabrication method is critically important. Herein, we present a simple method for fabricating a large-area flexible and transparent SERS substrate consisting of a silver-nanoparticle-grafted wrinkled polydimethylsiloxane (Ag NPs@W-PDMS) film, using a surface-wrinkling technique and magnetron sputtering technology. By characterizing rhodamine 6G as a probe molecule with a portable Raman spectrometer, the flexible SERS substrate shows a low detection limit (10-7 M), a high enhancement factor (6.11 × 106), and excellent spot-spot and batch-batch reproducibilities (9.0% and 4.2%, respectively). Moreover, the Ag NPs@W-PDMS substrate maintains high SERS activity under bending and twisting mechanical deformations of over 100 cycles, as well as storage in air for 30 days. To evaluate its practical feasibility, in situ detection of malachite green on apple and tomato peels is performed with a detection limit of 10-6 M. In addition, for point-of-care analysis, we develop a wireless transmission system to transmit the collected SERS spectral data to a computer in real time for signal processing and analysis. Therefore, the proposed Ag NPs@W-PDMS SERS substrate fabricated through a simple and mass-producible method, combined with the utilization of a portable Raman spectrometer and wireless communication, offers a promising opportunity to extend the SERS technique from the laboratory to POCT applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Sistemas de Atención de Punto , Plata/química , Espectrometría Raman/métodos , Comunicación
3.
Foods ; 11(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35741924

RESUMEN

Maize is susceptible to mold infection during growth and storage due to its large embryo and high moisture content. Therefore, it is essential to distinguish the moldy sample from healthy groups to prevent the spread of mold and avoid huger economic losses. Catalase is a metabolite in the growth of microorganisms; hence, all maize samples were accurately divided into four moldy grades (health, mild, moderate, and severe levels) by determining their catalase activity. The visible and shortwave near-infrared (Vis-SWNIR) and longwave near-infrared (LWNIR) hyperspectral images were investigated to jointly identify the moldy levels of maize. Spectra and texture information of each maize sample were extracted and used to build the classification models of maize with different moldy levels in pixel-level fusion and feature-level fusion. The result showed that the feature-level fusion of spectral and texture within Vis-SWNIR and LWNIR regions achieved the best results, overall prediction accuracy reached 95.00% for each moldy level, all healthy maize was correctly classified, and none of the moldy samples were misclassified as healthy level. This study illustrated that two hyperspectral image systems, with complementary spectral ranges, combined with feature selection and data fusion strategies, could be used synergistically to improve the classification accuracy of maize with different moldy levels.

4.
Quant Imaging Med Surg ; 11(4): 1651-1667, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33816198

RESUMEN

Tuberculosis is a serious public health challenge facing mankind and one of the top ten causes of death. Diagnostic imaging plays an important role, particularly for the diagnosis and treatment planning of tuberculosis patients with negative microbiology results. This article illustrates a number of atypical computed tomography (CT) appearances of pulmonary tuberculosis (PTB), including (I) clustered micronodules (CMNs) sign; (II) reversed halo sign (RHS); (III) tuberculous pneumatocele; (IV) hematogenously disseminated PTB with predominantly diffuse ground glass opacity manifestation; (V) hematogenously disseminated PTB with randomly distributed non-miliary nodules; (VI) PTB changes occur on the background of emphysema or honeycomb changes of interstitial pneumonia; and (VII) PTB manifesting as organizing pneumonia. While the overall incidence of PTB is decreasing globally, the incidence of atypical manifestations of tuberculosis is increasing. A good understanding of the atypical CT imaging changes of active PTB shall help the diagnosis and differential diagnosis of PTB in clinical practice.

5.
Electrophoresis ; 40(23-24): 3123-3131, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31576580

RESUMEN

Plasmonic nanomaterials possessing large-volume, high-density hot spots with high field enhancement are highly desirable for ultrasensitive surface-enhanced Raman scattering (SERS) sensing. However, many as-prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two-step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2 ). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi-periodic cloud-like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large-area accessible dense hot spots. The optimized 3D-structured SERS substrate exhibits high-quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10-9 M. Furthermore, the as-prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10-7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large-area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS-based sensors.


Asunto(s)
Aluminio/química , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/instrumentación , Diseño de Equipo , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
6.
RSC Adv ; 9(38): 21771-21776, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35518849

RESUMEN

Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates. Here, we demonstrate a 3D biomimetic SERS substrate prepared by deposition of silver nanoparticles (Ag NPs) on the bioscaffold arrays of cicada wings using laser molecular beam epitaxy. This deposition method can offer a large number of nanoparticles with average diameter of ∼10 nm and nanogaps of sub-10 nm on the surface of chitin nanopillars to generate a high density of hotspots. The prepared 3D Ag/cicada SERS substrate shows a limit of detection (LOD) for Rhodamine 6G as low as 10-7 M, high enhancement factor of 1.09 × 105, and excellent signal uniformity of 6.8%. Moreover, the molecular fingerprints of melamine in infant formula can be directly extracted with an LOD as low as 10 mg L-1, without the need for functional modification. The prepared SERS-active substrate, due to its low cost, high-throughput, and good detection performance, can be widely used in applications such as food safety and environmental monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA