Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(19): e2309467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100229

RESUMEN

Electrolyte-gated transistors have strong potential for high-performance artificial synapses in neuromorphic bio-interfaces owing to their outstanding synaptic characteristics, low power consumption, and human-like mechanisms. However, the short retention time is a hurdle to overcome owing to the natural diffusion of protons. Here, a novel modulation technique of ionic conductivity is proposed with yttria-stabilized hafnia for the first time to enhance the retention characteristic of a solid-state electrolyte-gated transistor-based artificial synapse. With the optimization of the ionic conductivity in yttria-stabilized hafnia, a high retention time of over 300 s and remarkable synaptic characteristics are accomplished by regulating channel conductance with precise modulation of the strength of the proton-electron coupling intensity along the input signals. Furthermore, pattern recognition simulation is conducted based on the measured synaptic characteristics, exhibiting 94.41% of operation accuracy, which implies a promising solution for neuromorphic in-memory computing systems with a high operation accuracy and low power consumption.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38033204

RESUMEN

Optimizing the contact structure while reducing the contact resistance in advanced transistors has become an extremely challenging problem. Because the existing techniques are limited to controlling only one semiconductor type, either n- or p-type, owing to their work function differences, significant challenges are encountered in the integration of a contact structure and metal suitable for both n- and p-type semiconductors. This is a formidable drawback of the complementary metal-oxide-semiconductor (CMOS) technology. In this paper, we demonstrate the effectiveness of a metal/graphene/semiconductor (MGrS) as a universal source/drain contact structure for both n- and p-type transistors. The MGrS contact structure significantly enhanced the reverse current density (JR) and reduced the Schottky barrier height (SBH) for both semiconductor types. From the analysis of the SBH values and their relationship with the metal work function, which refers to the S-parameter, the van der Waals contact of graphene (Gr) effectively alleviated the Fermi level (FL) pinning for both semiconductor types, reducing the metal-induced gap states (MIGS) at the Gr/semiconductor interface. Furthermore, Gr effectively modulated the work function of the contact metal to yield a position favorable for each semiconductor type. Consequently, a single MGrS contact structure on a Si substrate resulted in excellent Ohmic contacts in both n- and p-type Si, with SBH values reduced to 0.012 and 0.024 eV for n- and p-type Si, respectively. This new approach for integrating the contact structures of semiconductor types will lead to extended capabilities for high-performance device applications and CMOS logical circuitry.

3.
Proc Natl Acad Sci U S A ; 120(28): e2219231120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399389

RESUMEN

Real-time monitoring of various neurochemicals with high spatial resolution in multiple brain regions in vivo can elucidate neural circuits related to various brain diseases. However, previous systems for monitoring neurochemicals have limitations in observing multiple neurochemicals without crosstalk in real time, and these methods cannot record electrical activity, which is essential for investigating neural circuits. Here, we present a real-time bimodal (RTBM) neural probe that uses monolithically integrated biosensors and multiple shanks to study the connectivity of neural circuits by measuring multiple neurochemicals and electrical neural activity in real time. Using the RTBM probe, we demonstrate concurrent measurements of four neurochemicals-glucose, lactate, choline, and glutamate without cross-talking each other-and electrical activity in real time in vivo. Additionally, we show the functional connectivity between the medial prefrontal cortex and mediodorsal thalamus through the simultaneous measurement of chemical and electrical signals. We expect that our device will contribute to not only elucidating the role of neurochemicals in neural circuits related to brain functions but also developing drugs for various brain diseases related to neurochemicals.


Asunto(s)
Encefalopatías , Encéfalo , Humanos , Encéfalo/fisiología , Fenómenos Electrofisiológicos , Ácido Glutámico , Electrofisiología
4.
ACS Appl Mater Interfaces ; 15(26): 31608-31616, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339325

RESUMEN

Negative differential resistance (NDR) based on the band-to-band tunneling (BTBT) mechanism has recently shown great potential in improving the performance of various electronic devices. However, the applicability of conventional BTBT-based NDR devices is restricted by their insufficient performance due to the limitations of the NDR mechanism. In this study, we develop an insulator-to-metal phase transition (IMT)-based NDR device that exploits the abrupt resistive switching of vanadium dioxide (VO2) to achieve a high peak-to-valley current ratio (PVCR) and peak current density (Jpeak) as well as controllable peak and valley voltages (Vpeak/valley). When a phase transition is induced in VO2, the effective voltage bias on the two-dimensional channel is decreased by the reduction in the VO2 resistance. Accordingly, the effective voltage adjustment induced by the IMT results in an abrupt NDR. This NDR mechanism based on the abrupt IMT results in a maximum PVCR of 71.1 through its gate voltage and VO2 threshold voltage tunability characteristics. Moreover, Vpeak/valley is easily modulated by controlling the length of VO2. In addition, a maximum Jpeak of 1.6 × 106 A/m2 is achieved through light-tunable characteristics. The proposed IMT-based NDR device is expected to contribute to the development of various NDR devices for next-generation electronics.

5.
Biosens Bioelectron ; 191: 113473, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237704

RESUMEN

Investigation of the chemical and electrical signals of cells in vivo is critical for studying functional connectivity and brain diseases. Most previous studies have observed either the electrical signals or the chemical signals of cells because recording electrical signals and neurochemicals are done by fundamentally different methods. Herein, we present a bimodal MEMS neural probe that is monolithically integrated with an array of microelectrodes for recording electrical activity, microfluidic channels for sampling extracellular fluid, and a microfluidic interface chip for multiple drug delivery and sample isolation from the localized region at the cellular level. In this work, we successfully demonstrated the functionality of our probe by monitoring and modulating bimodal (electrical and chemical) neural activities through the delivery of chemicals in a co-localized brain region in vivo. We expect our bimodal probe to provide opportunities for a variety of in-depth studies of brain functions as well as for the investigation of neural circuits related to brain diseases.


Asunto(s)
Técnicas Biosensibles , Encéfalo , Sistemas de Liberación de Medicamentos , Microelectrodos , Microfluídica
6.
Adv Sci (Weinh) ; 8(12): 2100208, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34194944

RESUMEN

For next-generation electronics and optoelectronics, 2D-layered nanomaterial-based field effect transistors (FETs) have garnered attention as promising candidates owing to their remarkable properties. However, their subthreshold swings (SS) cannot be lower than 60 mV/decade owing to the limitation of the thermionic carrier injection mechanism, and it remains a major challenge in 2D-layered nanomaterial-based transistors. Here, a gate-connected MoS2 atomic threshold switching FET using a nitrogen-doped HfO2-based threshold switching (TS) device is developed. The proposed device achieves an extremely low SS of 11 mV/decade and a high on-off ratio of ≈106 by maintaining a high on-state drive current due to the steep switching of the TS device at the gate region. In particular, the proposed device can function as an infrared detectable phototransistor with excellent optical properties. The proposed device is expected to pave the way for the development of future 2D channel-based electrical and optical transistors.

7.
Small ; 17(30): e2100242, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34114332

RESUMEN

Presently, the 3-terminal artificial synapse device has been in focus for neuromorphic computing systems owing to its excellent weight controllability. Here, an artificial synapse device based on the 3-terminal solid-state electrolyte-gated transistor is proposed to achieve outstanding synaptic characteristics with a human-like mechanism at low power. Novel synaptic characteristics are accomplished by precisely tuning the threshold voltage using the proton-electron coupling effect, which is caused by proton migration inside the electrolyte. However, these synaptic characteristics are degraded because traps at the interface of channel/electrolyte disturb the proton-electron coupling effect. To minimize degradation, the oxygen plasma treatment is performed to reduce interface traps. As a result, symmetric weight updates and outstanding synaptic characteristics are achieved. Furthermore, high repeatability and long-term plasticity are observed at low operating power, which is essential for artificial synapses. Therefore, this study shows the progress of artificial synapses and proposes a promising method, a low-power neuromorphic system, to achieve high accuracy.


Asunto(s)
Electrones , Protones , Electrólitos , Humanos , Sinapsis
8.
Lab Chip ; 21(12): 2383-2397, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33955442

RESUMEN

The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.e., a minimally invasive, polyimide-based flexible array of electrodes that can enable the recording of ECoG signals in multiple regions of the brain with minimal exposure of the surface of the brain. Magnetic force-assisted positioning of a flexible electrode array enables recording from distant brain regions with a small cranial window. Also, a biodegradable organic compound used for attaching a magnet on the electrodes allows simple retrieval of the magnet. We demonstrate with an in vivo chronic recording that an implanted ECoG electrode array can record ECoG signals from the visual cortex and the motor cortex during a rat's free behavior. Our results indicate that the proposed device induced minimal damage to the animal. We expect the proposed device to be utilized for experiments for large-scale brain circuit analyses as well as clinical applications for intra-operative monitoring of epileptic activity.


Asunto(s)
Electrocorticografía , Electroencefalografía , Animales , Encéfalo , Mapeo Encefálico , Electrodos Implantados , Ratas
9.
Small ; 16(49): e2004371, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33205614

RESUMEN

2D semiconductor-based ferroelectric field effect transistors (FeFETs) have been considered as a promising artificial synaptic device for implementation of neuromorphic computing systems. However, an inevitable problem, interface traps at the 2D semiconductor/ferroelectric oxide interface, suppresses ferroelectric characteristics, and causes a critical degradation on the performance of 2D-based FeFETs. Here, hysteresis modulation method using self-assembly monolayer (SAM) material for interface trap passivation on 2D-based FeFET is presented. Through effectively passivation of interface traps by SAM layer, the hysteresis of the proposed device changes from interface traps-dependent to polarization-dependent direction. The reduction of interface trap density is clearly confirmed through the result of calculation using the subthreshold swing of the device. Furthermore, excellent optic-neural synaptic characteristics are successfully implemeted, including linear and symmetric potentiation and depression, and multilevel conductance. This work identifies the potential of passivation effect for 2D-based FeFETs to accelerate the development of neuromorphic computing systems.


Asunto(s)
Redes Neurales de la Computación , Transistores Electrónicos , Óxidos , Semiconductores
10.
Materials (Basel) ; 13(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630791

RESUMEN

The discovery of ferroelectricity in HfO2-based materials in 2011 provided new research directions and opportunities. In particular, for atomic layer deposited Hf0.5Zr0.5O2 (HZO) films, it is possible to obtain homogenous thin films with satisfactory ferroelectric properties at a low thermal budget process. Based on experiment demonstrations over the past 10 years, it is well known that HZO films show excellent ferroelectricity when sandwiched between TiN top and bottom electrodes. This work reports a comprehensive study on the effect of TiN top and bottom electrodes on the ferroelectric properties of HZO thin films (10 nm). Investigations showed that during HZO crystallization, the TiN bottom electrode promoted ferroelectric phase formation (by oxygen scavenging) and the TiN top electrode inhibited non-ferroelectric phase formation (by stress-induced crystallization). In addition, it was confirmed that the TiN top and bottom electrodes acted as a barrier layer to hydrogen diffusion into the HZO thin film during annealing in a hydrogen-containing atmosphere. These features make the TiN electrodes a useful strategy for improving and preserving the ferroelectric properties of HZO thin films for next-generation memory applications.

11.
Nanoscale Horiz ; 5(4): 654-662, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32226980

RESUMEN

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures. Here, we show the m-NDR device formed on a BP/(ReS2 + HfS2) type-III double-heterostructure. This m-NDR device is then integrated with a vdW transistor to demonstrate a ternary vdW latch circuit capable of storing three logic states. Finally, the ternary latch is extended toward ternary SRAM, and its high-speed write and read operations are theoretically verified.

12.
Adv Sci (Weinh) ; 6(21): 1901255, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728284

RESUMEN

In this study, a near-infrared photodetector featuring a high photoresponsivity and a short photoresponse time is demonstrated, which is fabricated on rhenium diselenide (ReSe2) with a relatively narrow bandgap (0.9-1.0 eV) compared to conventional transition-metal dichalcogenides (TMDs). The excellent photo and temporal responses, which generally show a trade-off relation, are achieved simultaneously by applying a p-doping technique based on hydrochloric acid (HCl) to a selected ReSe2 region. Because the p-doping of ReSe2 originates from the charge transfer from un-ionized Cl molecules in the HCl to the ReSe2 surface, by adjusting the concentration of the HCl solution from 0.1 to 10 m, the doping concentration of the ReSe2 is controlled between 3.64 × 1010 and 3.61 × 1011 cm-2. Especially, the application of the selective HCl doping technique to the ReSe2 photodetector increases the photoresponsivity from 79.99 to 1.93 × 103 A W-1, and it also enhances the rise and decay times from 10.5 to 1.4 ms and from 291 to 3.1 ms, respectively, compared with the undoped ReSe2 device. The proposed selective p-doping technique and its fundamental analysis will provide a scientific foundation for implementing high-performance TMD-based electronic and optoelectronic devices.

13.
ACS Nano ; 13(9): 10294-10300, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31469532

RESUMEN

Layered two-dimensional (2D) materials have entered the spotlight as promising channel materials for future optoelectronic devices owing to their excellent electrical and optoelectronic properties. However, their limited photodetection range caused by their wide bandgap remains a principal challenge in 2D layered materials-based phototransistors. Here, we developed a germanium (Ge)-gated MoS2 phototransistor that can detect light in the region from visible to infrared (λ = 520-1550 nm) using a detection mechanism based on band bending modulation. In addition, the Ge-gated MoS2 phototransistor is proposed as a multilevel optic-neural synaptic device, which performs both optical-sensing and synaptic functions on one device and is operated in different current ranges according to the light conditions: dark, visible, and infrared. This study is expected to contribute to the development of 2D material-based phototransistors and synaptic devices in next-generation optoelectronics.


Asunto(s)
Disulfuros/química , Rayos Infrarrojos , Molibdeno/química , Neuronas/fisiología , Fenómenos Ópticos , Sinapsis/fisiología , Transistores Electrónicos , Termodinámica , Factores de Tiempo
14.
ACS Appl Mater Interfaces ; 11(37): 34084-34090, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31429263

RESUMEN

Energy barrier formed at a metal/semiconductor interface is a critical factor determining the performance of nanoelectronic devices. Although diverse methods for reducing the Schottky barrier height (SBH) via interface engineering have been developed, it is still difficult to achieve both an ultralow SBH and a low dependence on the contact metals. In this study, a novel structure, namely, a metal/transition-metal dichalcogenide (TMD) interlayer (IL)/dielectric IL/semiconductor (MTDS) structure, was developed to overcome these issues. Molybdenum disulfide (MoS2) is a promising TMD IL material owing to its interface characteristics, which yields a low SBH and reduces the reliance on contact metals. Moreover, an ultralow SBH is achieved via the insertion of an ultrathin ZnO layer between MoS2 and a semiconductor, thereby inducing an n-type doping effect on the MoS2 IL and forming an interface dipole in the favorable direction at the ZnO IL/semiconductor interfaces. Consequently, the lowest SBH (0.07 eV) and a remarkable improvement in the reverse current density (by a factor of approximately 5400) are achieved, with a wide room for contact-metal dependence. This study experimentally and theoretically validates the effect of the proposed MTDS structure, which can be a key technique for next-generation nanoelectronics.

15.
ACS Appl Mater Interfaces ; 11(35): 32178-32185, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31392881

RESUMEN

With the significant technological developments in recent times, the neuromorphic system has been receiving considerable attention owing to its parallel arithmetic, low power consumption, and high scalability. However, the low reliability of artificial synapse devices disturbs calculations and causes inaccurate results in neuromorphic systems. In this paper, we propose a stable resistive artificial synapse (RAS) device with nitrogen-doped titanium oxide (TiOx:N)-based resistive switching (RS) memory. The TiOx:N-based RAS, compared to the TiOx-based RAS, demonstrates more stable RS characteristics in current-voltage (I-V) and pulse measurements. In terms of resistance variability, the TiOx:N-based RAS demonstrates five times lower resistance variability at 1.38%, compared to 6.68% with the TiOx-based RAS. In addition, we verified the relation between the neuromorphic system and the resistance reliability of the synapse device for the first time. The pattern recognition simulation is performed using an artificial neural network (ANN) consisting of artificial synapse devices using the Modified National Institute of Standards and Technology dataset. In the simulation, the ANN with the TiOx:N-based RAS exhibited significant pattern recognition accuracy of 64.41%, while the ANN with TiOx-based RAS demonstrated only low recognition accuracy of 22.07%. According to the results of subsequent simulations, the pattern recognition accuracy exponentially decreases when the resistance variability exceeds 5%. Therefore, for implementing a stable neuromorphic system, the synapse device in the neuromorphic system has to maintain low resistance variability. The proposed nitrogen-doped synapse device is suitable for neuromorphic systems because reliable resistance variability can be obtained with only simple process steps.

16.
Nanoscale ; 11(27): 12871-12877, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31243409

RESUMEN

Recently, there have been various attempts to demonstrate the feasibility of transition metal dichalcogenide (TMD) transistors for digital logic circuits. A complementary inverter circuit, which is a basic building block of a logic circuit, was implemented in earlier works by heterogeneously integrating n- and p-channel transistors fabricated on different TMD materials. Subsequently, to simplify the circuit design and fabrication process, complementary inverters were constructed on single-TMD materials using ambipolar transistors. However, continuous transition from the electron-conduction to the hole-conduction state in the ambipolar devices led to the problem of a high leakage current. Here, we report a polarity-controllable TMD transistor that can operate as both an n- and a p-channel transistor with a low leakage current of a few picoamperes. The device polarity can be switched simply by converting the sign of the drain voltage. This is because a metal-like tungsten ditelluride (WTe2) with a low carrier concentration is used as a drain contact, which subsequently allows selective carrier injection at the palladium/tungsten diselenide (WSe2) junction. In addition, by using the operating principle of the polarity-controllable transistor, we demonstrate a complementary inverter circuit on a single TMD channel material (WSe2), which exhibits a very low static power consumption of a few hundred picowatts. Finally, we confirm the expandability of this polarity-controllable transistor toward more complex logic circuits by presenting the proper operation of a three-stage ring oscillator.

17.
ACS Appl Mater Interfaces ; 11(23): 20949-20955, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117422

RESUMEN

Although molybdenum disulfide (MoS2) is highlighted as a promising channel material, MoS2-based field-effect transistors (FETs) have a large threshold voltage hysteresis (Δ VTH) from interface traps at their gate interfaces. In this work, the Δ VTH of MoS2 FETs is significantly reduced by inserting a 3-aminopropyltriethoxysilane (APTES) passivation layer at the MoS2/SiO2 gate interface owing to passivation of the interface traps. The Δ VTH is reduced from 23 to 10.8 V by inserting the 1%-APTES passivation layers because APTES passivation prevents trapping and detrapping of electrons, which are the major source of the Δ VTH. The reduction in the density of interface traps ( Dit) is confirmed by the improvement of the subthreshold swing (SS) after inserting the APTES layer. Furthermore, the improvement in the synaptic characteristics of the MoS2 FET through the APTES passivation is investigated. Both inhibitory and excitatory postsynaptic currents (PSC) are increased by 33% owing to the reduction in the Δ VTH and the n-type doping effect of the APTES layer; moreover, the linearity of PSC characteristics is significantly improved because the reduction in Δ VTH enables the synaptic operation to be over the threshold region, which is linear. The application of the APTES gate passivation technique to MoS2 FETs is promising for reliable and accurate synaptic applications in neuromorphic computing technology as well as for the next-generation complementary logic applications.

18.
ACS Appl Mater Interfaces ; 11(9): 9182-9189, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30761894

RESUMEN

Electrochemical metallization (ECM) threshold switches are in great demand for various applications such as next-generation logic technology, future memory, and neuromorphic computing. However, the instability of operation due to inherent filamentary randomness is a severe problem that is yet to be solved. Here, we propose a specially treated hafnium oxide (HfO x:N)-based ECM threshold switch with high reliability, low-voltage operation (0.2 V), high ON/OFF ratio (5 × 108), great endurance (106), and fast switching speed (1.5 µs at 2 V). The nitrogen ions in the HfO x:N layer assist confining the path of the metallic filament, which significantly suppresses filament randomness as well as reduces power consumption and alternating current response time. The feasibility of ECM threshold switches to logic applications, AND and OR, is first introduced. The ECM threshold switch has great potential to be utilized in complementary logic circuits because of its ultralow operation power consumption, high integrability using an array structure (4 F2), and fast switching characteristics. Furthermore, we have successfully verified its applicability to flexible electronics on polyethylene naphthalate films that can retain stable operation under considerable mechanical stress. We believe that this research paves the way to fabricate highly reliable ECM threshold switches for flexible complementary logic circuits with ultralow power consumption.

19.
ACS Appl Mater Interfaces ; 11(6): 6230-6237, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30663311

RESUMEN

Schottky barrier height (SBH) engineering of contact structures is a primary challenge to achieve high performance in nanoelectronic and optoelectronic applications. Although SBH can be lowered through various Fermi-level (FL) unpinning techniques, such as a metal/interlayer/semiconductor (MIS) structure, the room for contact metal adoption is too narrow because the work function of contact metals should be near the conduction band edge (CBE) of the semiconductor to achieve low SBH. Here, we propose a novel structure, the metal/transition metal dichalcogenide/semiconductor structure, as a contact structure that can effectively lower the SBH with wide room for contact metal adoption. A perpendicularly integrated molybdenum disulfide (MoS2) interlayer effectively alleviates FL pinning by reducing metal-induced gap states at the MoS2/semiconductor interface. Additionally, it can induce strong FL pinning of contact metals near its CBE at the metal/MoS2 interface. The technique using FL pinning and unpinning at metal/MoS2/semiconductor interfaces is first introduced in the MIS scheme to allow the use of various contact metals. Consequently, significant reductions of the SBH from 0.48 to 0.12 eV for GaAs and from 0.56 to 0.10 eV for Ge are achieved with several different contact metals. This work significantly reduces the dependence on contact metals with lowest SBH and proposes a new way of overcoming current severe contact issues for future nanoelectronic and optoelectronic applications.

20.
ACS Appl Mater Interfaces ; 10(31): 26378-26386, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30003786

RESUMEN

In the post-Moore era, it is well-known that contact resistance has been a critical issue in determining the performance of complementary metal-oxide-semiconductor (CMOS) reaching physical limits. Conventional Ohmic contact techniques, however, have hindered rather than helped the development of CMOS technology reaching its limits of scaling. Here, a novel conductive filament metal-interlayer-semiconductor (CF-MIS) contact-which achieves ultralow contact resistance by generating CFs and lowering Schottky barrier height (SBH)-is investigated for potential applications in various nanodevices in lieu of conventional Ohmic contacts. This universal and innovative technique, CF-MIS contact, forming the CFs to provide a quantity of electron paths as well as tuning SBH of semiconductor is first introduced. The proposed CF-MIS contact achieves ultralow specific contact resistivity, exhibiting up to ∼×700 000 reduction compared to that of the conventional metal-semiconductor contact. This study proves the viability of CF-MIS contacts for future Ohmic contact schemes and that they can easily be extended to mainstream electronic nanodevices that suffer from significant contact resistance problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...