Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 348: 123884, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548155

RESUMEN

The most recent structural study of graphene oxide (GO) indicates that the oxidized debris (ODs) adhered to as-prepared GO will strip in certain aquatic settings. The impact of ODs stripping on the characteristics of GO has been widely reported, but its effects on GO aggregation have received less attention. Here, the influence of OD stripping on the GO aggregation property was identified, and the aggregation of as-prepared GO and GO upon OD stripping was compared. Upon ODs stripping, the pKa values of GO shifted from 3.91, 6.25, and 9.84 to 4.54, 6.65, and 10.21, respectively. Further analysis indicated the removal of ODs reduced the net negative charge and improved the hydrophobicity of GO, hence promoting the aggregation of GO. The acceleration of GO-Ca2+-OD aggregate formation was facilitated by the collective effects of ODs stripping, functional group deprotonation, double layer compression, OD bridging, and charge neutralization. The metal ions and stripped ODs attach to GO edges and link GO, which perform like bridges and contribute to further aggregation. In general, the existence of ODs adds complexity to the constructions and characteristics of GO, and it is important to take this into account while evaluating the aggregation characteristic of GO-based materials.


Asunto(s)
Grafito , Simulación de Dinámica Molecular , Óxidos/química , Agua/química , Grafito/química
2.
Environ Manage ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376512

RESUMEN

Pb soil pollution poses a serious health risk to both the environment and humans. Immobilization is the most common strategy for remediation of heavy metal polluted soil. In this study, municipal sewage sludge was used as an amendment for rehabilitation of Pb-contaminated soils, for agricultural use, near a lead-acid battery factory. The passivation effect was further improved by the addition of phosphate fertilizer. It was found that the leachable Pb content in soils was decreased from 49.6 mg kg-1 to 16.1-36.6 mg kg-1 after remediation of sludge for 45 d at applied dosage of municipal sewage sludge of 4-16 wt%, and further decreased to 14.3-34.3 mg kg-1 upon extension of the remediation period to 180 d. The addition of phosphate fertilizer greatly enhanced the Pb immobilization, with leachable Pb content decreased to 2.0-23.6 mg kg-1 with increasing dosage of phosphate fertilizer in range of 0.8-16 wt% after 180 d remediation. Plant assays showed that the bioavailability of Pb was significantly reduced by the soil remediation, with the content of absorbed Pb in mung bean roots decreased by as much as 87.0%. The decrease in mobility and biotoxicity of the soil Pb is mainly attributed to the speciation transformation of carbonate, Fe-Mn oxides and organic matter bound Pb to residue Pb under the synergism of reduction effect of sludge and acid dissolution and precipitation effect of phosphate fertilizer. This study suggests a new method for remediation of Pb-contaminated soil and utilization of municipal sewage sludge resources.

3.
Angew Chem Int Ed Engl ; 63(10): e202318516, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38241198

RESUMEN

In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.

4.
Environ Technol ; : 1-13, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36862520

RESUMEN

Soil heavy metal pollution poses a serious threat to the eco-environment. Municipal sludge-based passivators and clay minerals have been widely applied to immobilize heavy metal contamination in soils. However, little is known about the immobilization effect and mechanisms of raw municipal sludge and clay in reducing the mobility and bioavailability of heavy metals in soils. Here, municipal sludge, raw clay and mixtures of thereof were used to remediate Pb-contaminated soil from a Pb-acid battery factory. The remediation performance was evaluated through acid leaching, sequential extraction, and plant assay. Results showed that the leachable Pb content in the soil decreased from 5.0 mg kg-1 to 4.8, 4.8 and 4.4 mg kg-1 after 30 d of remediation with MS and RC added at equal weights to give total dosage of 20, 40 wt% and 60 wt %, respectively. The leachable Pb further decreased to 1.7, 2.0 and 1.7 mg kg-1 after 180 d of remediation. Speciation analysis of the soil Pb indicated that the exchangeable and Fe-Mn oxide-bound Pb were transformed into residual Pb in the early stage of remediation, and the carbonate-bound Pb and organic matter-bound Pb were transformed into residual Pb in the later stage of remediation. As a result, Pb accumulation in mung beans decreased by 78.5%, 81.1% and 83.4% after 180 days of remediation. These results indicate that the leaching toxicity and phytotoxicity of Pb in remediated soils were significantly reduced, presenting a better and low-cost method for soil remediation.

5.
Sci Total Environ ; 851(Pt 1): 157954, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35963410

RESUMEN

Given the possible ecological dangers of graphene oxide (GO), a thorough understanding of its aggregation behavior is essential. During industrial applications, GOs may be used as multi-layered, and there is some possibility that GOs are released into the water environment in the aggregated state. Thus, elucidating the fate of aggregated GO is valuable for evaluating their environmental fate. In this work, the effect of pH on the fate of aggregated graphene oxide (GO) was explored using experimental measurements and molecular dynamic simulations and promoted aggregation of GO upon the increase of pH was observed. Additional investigations show that the presence of oxidation debris (ODs) on GO served as the primary driver of the unanticipated trend in aggregation behavior. GO consists of lightly oxidized functionalized graphene sheets and highly oxidized ODs. Upon the increase of pH and the deprotonation of functional groups, ODs are stripped from GO due to electrostatic repulsions and steric hindrance of water molecules. The stripping of ODs decreased the zeta potential and increased the hydrophobicity of GO, thus accelerating the aggregation. Additionally, the stripped ODs may recombine to GO edges and bridged GOs, which also contribute to further aggregation. Functional group deprotonation, ODs stripping, OD bridging, double layer compression, and charge neutralization all worked together to promote aggregation, resulting in the formation of FG-water-OD aggregates. Overall, the presence of ODs complicates the structures and properties of GO and should be considered during the development of GO-related nanomaterials and the evaluation of their environmental impact.


Asunto(s)
Grafito , Grafito/química , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Óxidos/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...