Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Research (Wash D C) ; 6: 0140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214197

RESUMEN

Anti-icing coatings on outdoor infrastructures inevitably suffer from mechanical injuries in numerous icing scenarios such as hailstorms, sandstorms, impacts of foreign objects, and icing-deicing cycles. Herein, the mechanisms of surface-defect-induced icing are clarified. At the defects, water molecules exhibit stronger adsorption and the heat transfer rate increases, accelerating the condensation of water vapor as well as ice nucleation and propagation. Moreover, the ice-defect interlocking structure increases the ice adhesion strength. Thus, a self-healing (at -20 °C) antifreeze-protein (AFP)-inspired anti-icing coating is developed. The coating is based on a design that mimics the ice-binding and non-ice-binding sites in AFPs. It enables the coating to markedly inhibit ice nucleation (nucleation temperature < -29.4 °C), prevent ice propagation (propagation rate < 0.00048 cm2/s), and reduce ice adhesion on the surface (adhesion strength < 38.9 kPa). More importantly, the coating can also autonomously self-heal at -20 °C, as a result of multiple dynamic bonds in its structure, to inhibit defect-induced icing processes. The healed coating sustains high anti-icing and deicing performance even under various extreme conditions. This work reveals the in-depth mechanism of defect-induced ice formation as well as adhesion, and proposes a self-healing anti-icing coating for outdoor infrastructures.

2.
Indoor Air ; 32(10): e13138, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305071

RESUMEN

Facial skin temperature has been applied to evaluate thermal comfort in a few studies, but the related theoretical basis is not sufficient. We conducted a climate-controlled experiment in winter. The air temperatures were 12, 15, 18, 21, and 24°C, and the relative humidity was set to 60%. During exposure (140 min), the subjects were in a sedentary state, and their thermal sensation, comfort, and acceptability of perceived thermal environments were documented many times. iButton instruments were used to continuously and automatically record skin temperatures on the forehead, nose, right ear, right cheek, left cheek, left ear, and chin. The measurement accuracy of the corrected skin temperature was within 0.1°C after calibrating each i-Button. The experimental results showed that the skin temperatures at different measurement points varied significantly. The forehead skin temperature was the highest, whereas the nose, being the facial part, exhibited the lowest skin temperature (except 24°C). The uneven degree of the skin temperature distribution increased as air temperature decreased. Correlation analysis confirmed that the facial skin temperature can be used to evaluate thermal sensation. Nose skin temperature and the average skin temperature of the forehead, nose, and chin are the most suitable indicators of thermal sensation. The correlation between facial skin temperature and the thermal sensation was significantly higher after 15 min of exposure time than that during 0-15 min. This study provides a theoretical basis for using facial skin temperature to dynamically monitor thermal sensations.


Asunto(s)
Contaminación del Aire Interior , Temperatura Cutánea , Humanos , Temperatura , Sensación Térmica , Cara
3.
Int J Pharm ; 605: 120833, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34175378

RESUMEN

Therapeutic proteins represent promising treatments in medical applications; however, direct administration of native proteins frequently suffers from in vivo enzymatic degradation or denaturation in hostile environments. Engineering proteins into biocompatible formulations can be used to solve these problems. Despite years of effort, efficient systemic delivery followed by successful release from the formulation remains a challenge. Herein, we describe a pH-responsive nanogel (PI825@PDC/protein NGs) formed by host-guest recognition of 6-arm PEGylated crystalline ß-cyclodextrin (ß-CD) and near-infrared IR825 dye, which affords highly efficient encapsulation of proteins during their self-assembly. PI825@PDC/protein NGs are robust enough to withstand hostile physiological conditions both in vitro and in vivo and could be slightly disassociated from protein release in acidic environments due to the anchored pH-responsive 2,3-dimethylmaleic anhydride (DMA) linker. Furthermore, the pH-responsive dynamics can be greatly enhanced by elevated temperature upon remote (Near-infrared spectroscopy) NIR irradiation of the IR825 within NGs, generating programmable release of loaded proteins for enhanced cancer treatment. This study describes a general method to load proteins with high efficiency for systemic delivery, followed by programmable protein release by remote NIR irradiation and offers new insights for protein engineering and potential medical applications.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Preparaciones de Acción Retardada , Concentración de Iones de Hidrógeno , Nanogeles
4.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266162

RESUMEN

The development of precise and personalized medicine requires novel formulation strategies to deliver the therapeutic payloads to the pathological tissues, producing enhanced therapeutic outcome and reduced side effects. As many diseased tissues are feathered with acidic characteristics microenvironment, pH-sensitive biomaterials for drug delivery present great promise for the purpose, which could protect the therapeutic payloads from metabolism and degradation during in vivo circulation and exhibit responsive release of the therapeutics triggered by the acidic pathological tissues, especially for cancer treatment. In the past decades, many methodologies, such as acidic cleavage linkage, have been applied for fabrication of pH-responsive materials for both in vitro and in vivo applications. In this review, we will summarize some pH-sensitive drug delivery system for medical application, mainly focusing on the pH-sensitive linkage bonds and pH-sensitive biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Animales , Humanos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...