Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.291
Filtrar
1.
Int J Hyperthermia ; 41(1): 2398557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39245446

RESUMEN

OBJECTIVE: To compare the efficacy and safety of high-intensity focused ultrasound (HIFU) and radical surgery for non-metastatic pancreatic cancer (PC). MATERIALS AND METHODS: We retrospectively analyzed 89 stage I/II/III PC patients who underwent HIFU (n = 43) or surgery (n = 46) at the Third Xiangya Hospital from January 2020 to December 2021. Pain relief, Karnofsky Performance Scale (KPS), overall survival (OS), treatment-related complications and risk factors for OS were assessed. RESULTS: There was no significant difference in the pain relief rate at 30 days post-treatment between the two groups. However, compared with the surgery group, the HIFU group showed significantly lower post-treatment VAS scores (p = 0.019). In the surgery group, the KPS at 30 days post-treatment was lower than pretreatment KPS (70 vs 80; p = 0.015). This relationship was reversed in the HIFU group (80 vs 70; p = 0.024). Median OS favored surgery over HIFU (23 vs 10 months; p < 0.001), with a higher 1-year OS rate (69.57% vs 32.6%; p < 0.001). However, there was no significant difference in OS between the two groups for stage III patients (p = 0.177). Complications rated ≥ grade III were 2.33% in the HIFU group and 32.6% in the surgery group. Multivariate analyses showed that age, KPS, and treatment methods were independent prognostic factors for OS. CONCLUSION: HIFU demonstrates advantages over surgery in terms of early KPS, VAS improvements, and safety for pancreatic cancer; however, long-term outcomes favor surgery. For III-stage disease, HIFU was noninferior to surgery in overall survival.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Adulto
2.
Medicine (Baltimore) ; 103(36): e39498, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252277

RESUMEN

Exosomes, which are extracellular vesicles secreted and released from specific cells, exist widely in cell culture supernatants and various body fluids. This study aimed to analyze the research status of exosomes in stroke, and predict developmental trends via bibliometric analyses. The related literature from January 1, 2008 to January 1, 2024 was searched in the Web of Science Core Collection and 943 articles were retrieved. VOSviewer was used to visualize national cooperation and institutional cooperation. Cluster analysis of keywords and Citespace were applied for mutation analysis. Results: The analysis of 943 works of literature showed that the number of published articles has been steadily increasing since 2015. It is predicted that nearly 211 articles will be published in 2024 and 220 annually by 2028. China has the largest number of publications (473), followed by the United States (234), and Germany (61). The institution with the most publications is Henry Ford Hospital (Detroit, MI). In the keyword cluster "Exosomes and the Mechanism of Stroke: Inflammation and Apoptosis," exosomes and inflammation were identified as hotspots. "Functional recovery" was a new trend in the keyword cluster of "Angiogenesis and Functional Recovery after Stroke." China and the United States are the main forces in this field, and both countries focusing on drug treatments. The studies have been published mainly in China and United States. The findings of our bibliometric analyses of the literature may enable researchers to choose appropriate institutions, collaborators, and journals.


Asunto(s)
Bibliometría , Exosomas , Accidente Cerebrovascular , Humanos , China/epidemiología , Investigación Biomédica , Estados Unidos
3.
Mol Divers ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225907

RESUMEN

It has been recognized that oxidative stress (OS) is implicated in the etiology of recurrent pregnancy loss (RPL), yet the biomarkers reflecting oxidative stress in association with RPL remain scarce. The dataset GSE165004 was retrieved from the Gene Expression Omnibus (GEO) database. From the GeneCards database, a compendium of 789 genes related to oxidative stress-related genes (OSRGs) was compiled. By intersecting differentially expressed genes (DEGs) in normal and RPL samples with OSRGs, differentially expressed OSRGs (DE-OSRGs) were identified. In addition, four machine learning algorithms were employed for the selection of diagnostic markers for RPL. The Receiver Operating Characteristic (ROC) curves for these genes were generated and a predictive nomogram for the diagnostic markers was established. The functions and pathways associated with the diagnostic markers were elucidated, and the correlations between immune cells and diagnostic markers were examined. Potential therapeutics targeting the diagnostic markers were proposed based on data from the Comparative Toxicogenomics Database and ClinicalTrials.gov. The candidate biomarker genes from the four models were further validated in RPL tissue samples using RT-PCR and immunohistochemistry. A set of 20 DE-OSRGs was identified, with 4 genes (KRAS, C2orf69, CYP17A1, and UCP3) being recognized by machine learning algorithms as diagnostic markers exhibiting robust diagnostic capabilities. The nomogram constructed demonstrated favorable predictive accuracy. Pathways including ribosome, peroxisome, Parkinson's disease, oxidative phosphorylation, Huntington's disease, and Alzheimer's disease were co-enriched by KRAS, C2orf69, and CYP17A1. Cell chemotaxis terms were commonly enriched by all four diagnostic markers. Significant differences in the abundance of five cell types, namely eosinophils, monocytes, natural killer cells, regulatory T cells, and T follicular helper cells, were observed between normal and RPL samples. A total of 180 drugs were predicted to target the diagnostic markers, including C544151, D014635, and CYP17A1. In the validation cohort of RPL patients, the LASSO model demonstrated superiority over other models. The expression levels of KRAS, C2orf69, and CYP17A1 were significantly reduced in RPL, while UCP3 levels were elevated, indicating their suitability as molecular markers for RPL. Four oxidative stress-related diagnostic markers (KRAS, C2orf69, CYP17A1, and UCP3) have been proposed to diagnose and potentially treat RPL.

4.
World J Stem Cells ; 16(8): 811-823, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39219725

RESUMEN

BACKGROUND: Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome (ARDS) patients. Mesenchymal stromal cell-derived microvesicles (MSC-MVs) have been shown to exert antifibrotic effects in lung diseases. AIM: To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models. METHODS: MSC-MVs with low hepatocyte growth factor (HGF) expression (siHGF-MSC-MVs) were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model. Following intubation, respiratory mechanics-related indicators were measured via an experimental small animal lung function tester. Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging. Immunohistochemical, western blotting, ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators. RESULTS: The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice. Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores. However, low expression of HGF (siHGF-MSC-MVs) significantly inhibited the effects of MSC-MVs (P < 0.05). Compared with the ARDS pulmonary fibrosis group, the MSC-MVs group exhibited suppressed expression of type I collagen antigen, type III collagen antigen, and the proteins transforming growth factor-ß and α-smooth muscle actin, whereas the siHGF-MVs group exhibited significantly increased expression of these proteins. In addition, pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group, and the effects of the MSC-MVs were significantly inhibited by low HGF expression (all P < 0.05). CONCLUSION: MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.

5.
ACS Omega ; 9(37): 38925-38935, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39310199

RESUMEN

During polar navigation, adverse environmental conditions like cold temperatures, fatigue, and corrosion can affect surface and underwater manned vehicles (UMVs). Understanding the fatigue fracture growth behavior of polar ship steel is crucial for ensuring safety. This study investigates the mechanical properties and fatigue fracture propagation of steel used in underwater vehicle rudders under various low-temperature conditions through experimental research. It compares and analyzes the static mechanical characteristics, fatigue crack growth rate, and fracture morphology of underwater manned vehicle rudder steels at different low temperatures. Findings show enhancements in yield strength, tensile strength, elastic modulus, and fatigue crack propagation life of steel 925A, steel 20#, and their welded parts under low-temperature conditions. The tensile strength of 925A steel, 20# steel, and their welded parts increases by 6.87%, 14.61%, and 12.55%, respectively, as the temperature decreases from 20 to -60 °C. The yield strength also increases by 14.17%, 29.09%, and 15.76%, respectively. Fatigue crack propagation rate experiments were conducted under different constant low-temperature conditions. This study offers direction for future modeling and experimental testing.

6.
J Ethnopharmacol ; 337(Pt 1): 118844, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303966

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is currently a major public health hazard.Yangyin Tongnao Granules (YYTN), a traditional Chinese medicinal prescription, exerts potential therapeutic effects on subsequent cerebral ischemia-reperfusion injury (CIRI) after ischemic stroke. However, further studies are required to comprehend the underlying mechanism of YYTN for treating CIRI and the associated spectrum-effect mechanisms. AIM OF THE STUDY: To investigate the coordinated correlation between the fingerprint and the pharmacodynamic indexes of the effective components (total flavonoids, total saponins, total alkaloids, and total phenolic acids) in YYTN for treating CIRI in rats. METHODS: The fingerprints of five specific components (ligustrazine, puerarin, ferulic acid, calycosin, and formononetin) of YYTN in rats with middle cerebral artery occlusion (MCAO) were established using high-performance liquid chromatography (HPLC), and their peak areas were quantified in plasma samples. The pharmacodynamic indexes of tumor necrosis factor-alpha (TNF-α), cytochrome c (Cyt-C), and total superoxide dismutase (T-SOD) were integrated using the Criteria Importance Through Intercriteria Correlation (CRITIC) method to create a comprehensive evaluation index. Spectrum-effect correlation was analyzed by performing gray relation analysis (GRA), correlation analysis (CA), and partial least squares regression (PLSR). The Borda method was then applied to integrate the obtained results. RESULTS: In MCAO rats, the effective components of YYTN reduced TNF-α and Cyt-C and increased T-SOD, which indicates their anti-inflammatory, antiapoptotic, and antioxidant effects. Spectrum-effect CA revealed certain associations between the chromatographic peaks of the five main components and the comprehensive pharmacodynamic evaluation index. Of these components, formononetin displayed the highest correlation, whereas ferulic acid exhibited the lowest correlation. All components showed a positive correlation. Using the Borda method, the components were ranked as follows based on correlation: formononetin > calycosin > ligustrazine > puerarin > ferulic acid. CONCLUSIONS: The effective components of YYTN exhibited synergistic effects in the treatment of MCAO rats, which could potentially be attributed to their multitarget and multipathway mechanisms. The Borda method-based spectrum-effect correlation analysis provides a coordinated approach to investigate the relationship between fingerprint and pharmacodynamics of traditional Chinese medicine (TCM).

7.
Biomed Pharmacother ; 179: 117374, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217836

RESUMEN

Cardiovascular disease (CVD) has now become the leading cause of death worldwide, and its high morbidity and mortality rates pose a great threat to society. Although numerous studies have reported the pathophysiology of CVD, the exact pathogenesis of all types of CVD is not fully understood. Therefore, much more research is still needed to explore the pathogenesis of CVD. With the development of proteomics, many studies have successfully identified the role of posttranslational modifications in the pathogenesis of CVD, including key processes such as apoptosis, cell metabolism, and oxidative stress. In this review, we summarize the progress in the understanding of posttranslational modifications in cardiovascular diseases, including novel protein posttranslational modifications such as succinylation and nitrosylation. Furthermore, we summarize the currently identified histone deacetylase (HDAC) inhibitors used to treat CVD, providing new perspectives on CVD treatment modalities. We critically analyze the roles of posttranslational modifications in the pathogenesis of CVD-related diseases and explore future research directions related to posttranslational modifications in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Procesamiento Proteico-Postraduccional , Humanos , Enfermedades Cardiovasculares/metabolismo , Animales , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Estrés Oxidativo/fisiología
8.
Clin Chim Acta ; 565: 119966, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278524

RESUMEN

BACKGROUND: Allergen testing has emerged as a pivotal component in prevention and treatment strategies for allergic diseases among children and the utilization of specific IgE (sIgE) through a fully automated chemiluminescent microarray immunoassay (CLMIA) has emerged as a promising trend in the simultaneous detection of multiple allergenic components of children. METHODS: The accuracy and reliability of CLMIA were verified using children's serum samples that concentrated on allergens. the allergens. The clinical diagnostic practicability of CLMIA was assessed through comprehensive evaluations including measurements of the limit of detection (LOD), intra-batch, and inter-batch precision, linearity analysis, the cross-contamination rate, and the concordance rate with the Phadia system. RESULTS: After the optimization process of CLMIA, the LODs for allergens were calculated to be below 0.01 kU/L, demonstrating the high sensitivity of CLMIA. All components exhibited good linearity within the range of 0.1-100.0 kU/L and the coefficient of determinations (R2 > 0.99). The data of intra-batch precision (<10 %) and inter-batch data (<15 %) illustrated the high reproducibility of CLMIA. The cross-contamination rates for allergens (<0.5 %) showed the high accuracy of CLMIA without interfering. The positive concordance rate between CLMIA and the Phadia system exceeds 90 % with a good negative concordance rate (>85 %) and the Kappa coefficients (>0.8), suggesting the close alignment of CLMIA and the Phadia system and showing the satisfactory clinical potential of CLMIA in children's allergy disease. CONCLUSIONS: The application of CLMIA has been promising in allergen testing, especially for detecting multiple allergenic components in children.

9.
Open Life Sci ; 19(1): 20220958, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290494

RESUMEN

This study aimed to clarify the role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes and the role of voltage-dependent anion channel 1 (VDAC1) in the PINK1/Parkin signaling pathway in mouse glomerular podocytes. For this purpose, podocytes were cultured with rapamycin and observed using microscopy. The apoptosis rate of podocytes was detected by flow cytometry. Changes in the mitochondrial membrane potential were measured. The autophagy-related proteins VDAC1, PINK1, Parkin, and LC3 were detected, and mitochondrial autophagosomes were observed via transmission electron microscopy. In the present study, we demonstrated that the number of podocytes treated with rapamycin was significantly reduced. Compared with those in the control group, the apoptosis rate of podocytes and the degree of mitochondrial membrane potential depolarization were significantly higher. We also found the expression levels of VDAC1, PINK1, Parkin, and LC3 were significantly increased. In the rapamycin-treated group, the numbers of swollen mitochondria and mitochondrial autophagosomes were significantly higher. Finally, we showed that rapamycin can upregulate the expression of VDAC1, PINK1, Parkin, and LC3 in glomerular podocytes, which is correlated with mitophagy. VDAC1 is involved in mitophagy and is related to the PINK1/Parkin signaling pathway, serving as an indicator of mitophagy in podocytes.

10.
Bioresour Technol ; : 131442, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241811

RESUMEN

Microbial degradation plays a crucial role in removing sulfonamides from soil, enhancing sulfamethoxazole (SMX) remediation. To further augment SMX removal efficiency and mitigate the transmission risk associated with antibiotic resistance genes (ARGs), this study proposes a novel approach that integrates micro-animals, microorganisms, and microbial fuel cell (MFC) technology. The results showed that earthworm-MFC synergy substantially reduces SMX content and ARGs abundance in soil. The introduction of earthworms enhances humus content, facilitating electron transfer within MFC and consequently improving current generation. Furthermore, electrical stimulation applied to earthworms led to increased protein secretion and enhanced antioxidant system activity, thereby accelerating SMX degradation. Earthworms also foster MFC-associated bacterial growth and SMX-degrading bacteria proliferation, augmenting MFC treatment efficacy. This synergistic effect significantly augmented the overall efficacy of MFC treatment for antibiotics. Overall, integrating earthworm activity with MFC technology effectively optimizes electricity generation and enhances pollutant removal.

11.
Nucleic Acids Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319588

RESUMEN

Like other functional RNAs, ribozymes encode a conserved catalytic center supported by peripheral domains that vary among ribozyme sub-families. To understand how core-periphery interactions contribute to ribozyme fitness, we compared the cleavage kinetics of all single base substitutions at 152 sites across the Bacillus subtilis glmS ribozyme by high-throughput sequencing (k-seq). The in vitro activity map mirrored phylogenetic sequence conservation in glmS ribozymes, indicating that biological fitness reports all biochemically important positions. The k-seq results and folding assays showed that most deleterious mutations lower activity by impairing ribozyme self-assembly. All-atom molecular dynamics simulations of the complete ribozyme revealed how individual mutations in the core or the IL4 peripheral loop introduce a non-native tertiary interface that rewires the catalytic center, eliminating activity. We conclude that the need to avoid non-native helix packing powerfully constrains the evolution of tertiary structure motifs in RNA.

12.
Microbiol Spectr ; : e0108824, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329474

RESUMEN

Bacteria within the family Paracoccaceae show promising potential for applications in various fields, garnering significant research attention. Three Gram stain-negative bacteria, strains CPCC 101601T, CPCC 101403T, and CPCC 100767, were isolated from diverse environments: freshwater, rhizosphere soil of Broussonetia papyrifera, and the phycosphere, respectively. Analysis of their 16S rRNA gene sequences, compared with those in the GenBank database, indicated that they belong to the family Paracoccaceae, with nucleotide similarities of 92.5%-99.9% to all of the Paracoccaceae members with valid taxonomic names. Phylogenetic studies based on 16S rRNA gene and whole-genome sequences identified CPCC 101601T as a member of the genus Pseudogemmobacter, CPCC 101403T belonging to the genus Paracoccus, and CPCC 100767 as part of the genus Gemmobacter. Notably, genomic analysis using average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; <70%) with their closely related strains suggested that CPCC 101601T and CPCC 101403T represent new species within their respective genera. Conversely, CPCC 100767 exhibited high ANI (98.5%) and dDDH (87.4%) values with Gemmobacter fulvus con5T, indicating it belongs to this already recognized species. The in-depth genomic analysis revealed that strains CPCC 101601T, CPCC 101403T, and CPCC 100767 harbor key genes related to the pathways for denitrifying, MA utilization, and polyhydroxyalkanoate biosynthesis. Moreover, genotyping and phenotyping analysis confirmed that strain CPCC 100767 has the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid, whereas CPCC 101601T can only perform the former bioprocess.IMPORTANCEBased on polyphasic taxonomic study, two new species, Pseudogemmobacter lacusdianii and Paracoccus broussonetiae, affiliated with the family Paracoccaceae were identified. This expands our understanding of the family Paracoccaceae and provides new microbial materials for further studies. Modern genomic techniques such as average nucleotide identity and digital DNA-DNA hybridization were utilized to determine species affiliations. These methods offer more precise results than traditional classification mainly based on 16S rRNA gene analysis. Beyond classification of these strains, the research delved into their genomes and discovered key genes related to denitrification, MA utilization, and polyhydroxyalkanoate biosynthesis. The identification of these genes provides a molecular basis for understanding the environmental roles of these strains. Particularly, strain CPCC 100767 demonstrated the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid. These bioprocess capabilities are of significant practical value, such as in agricultural production for use as biofertilizers or biostimulants.

13.
Front Oncol ; 14: 1437698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267831

RESUMEN

As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.

14.
Pharmacol Res ; 209: 107407, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270946

RESUMEN

Renal fibrosis (RF) is a common endpoint of various chronic kidney diseases, leading to functional impairment and ultimately progressing to end-stage renal failure. Glycolytic reprogramming plays a critical role in the pathogenesis of fibrosis, which maybe a potential therapeutic target for treating renal fibrosis. Here, we revealed the novel role of ZEB1 in renal fibrosis, and whether targeting ZEB1 is the underlying mechanism for the anti-fibrotic effects of ethyl caffeate (EC) to regulate the glycolytic process. Treatment of EC attenuated the renal fibrosis and inhibited ZEB1 expression in vivo and in vitro, reducing the upregulated expression of glycolytic enzymes (HK2, PKM2, PFKP) and key metabolites (lactic acid, pyruvate). ZEB1 overexpression promoted the renal fibrosis and glycolysis, whereas knockout of ZEB1 apparently attenuated renal fibrosis in vivo and in vitro. EC interacted with ZEB1 to modulate the glycolytic enzymes for suppressing the elevated glycolytic reprogramming during renal fibrosis. In summary, our study reveals that ZEB1 plays an important role in regulating glycolytic reprogramming during the renal tubular epithelial cell fibrosis, suggesting inhibition of ZEB1 may be a potential strategy for treating renal fibrosis. Additionally, EC is a potential new drug candidate for the treatment of renal fibrosis and CKD.

15.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39301631

RESUMEN

Fibrosis is the basis of structural remodeling in atrial fibrillation (AF), during which inflammation is crucial. Programmed cell death factor 4 (PDCD4) is a newly identified inflammatory gene, with unknown mechanisms of action in AF. The present study aimed to elucidate the effects of PDCD4 on the inflammation and structural remodeling of atrial myocytes. For this purpose, a PDCD4 overexpression plasmid (oePDCD4) and PDCD4 small interfering (si)RNA (siPDCD4) were used to modulate PDCD4 expression in mouse atrial myocytes (HL­1 cells). The expression of PDCD4 was detected using reverse transcription­quantitative PCR and western blot analysis. The optimal drug concentrations of peroxisome proliferator­activated receptor γ (PPARγ) agonist (pioglitazone hydrochloride), NF­κB inhibitor (CBL0137), PPARγ inhibitor (GW9962) and NF­κB agonist (betulinic acid) were screened using a Cell Counting Kit­8 assay. The levels of inflammatory factors were detected using enzyme­linked immunosorbent assays, the expression levels of fibrosis­related proteins and NF­κB subunits were detected using western blot analysis, and the expression of phosphorylated (p­)p65/p65 was detected using immunofluorescence staining. The results revealed that PDCD4 overexpression increased the levels of fibrotic factors (collagen I, collagen III, fibronectin, α­smooth muscle actin and matrix metalloproteinase 2), pro­inflammatory cytokines (IFN­Î³, IL­6, IL­17A and TNF­α) and p­p65, whereas it reduced the levels of anti­inflammatory cytokines (IL­4) in HL­1 cells. Additionally, treatment with the PPARγ agonist and NF­κB inhibitor reversed the levels of fibrotic­, pro­inflammatory and anti­inflammatory factors in oePDCD4­HL­1 cells. By contrast, PDCD4 silencing exerted the opposite effects on fibrotic factors, pro­inflammatory cytokines, anti­inflammatory cytokines and p­p65. In addition, treatment with the PPARγ inhibitor and NF­κB agonist reversed the levels of fibrotic­, pro­inflammatory and anti­inflammatory factors in siPDCD4­HL­1 cells. In conclusion, the present study demonstrated that PDCD4 may induce inflammation and fibrosis by activating the PPARγ/NF­κB signaling pathway, thereby promoting the structural remodeling of atrial myocytes in AF.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Fibrosis , Inflamación , Miocitos Cardíacos , FN-kappa B , PPAR gamma , Proteínas de Unión al ARN , Transducción de Señal , Animales , PPAR gamma/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , FN-kappa B/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Línea Celular
17.
Eur J Pharmacol ; 983: 176905, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39154828

RESUMEN

The gut microbiome-metabolites-kidney axis is a potential target for treating diabetic kidney disease (DKD). Our previous study found that Liraglutide attenuated DKD in rats by decreasing renal tubular ectopic lipid deposition (ELD) and serum metabolites levels, including L-5-Oxoproline (5-OP). However, the response of gut microbiome-metabolites-kidney axis to Liraglutide in DKD rats and the effect of 5-OP on ELD remain unknown. In this study, Sprague-Dawley rats were used as an animal model of DKD. They were subjected to a high fat diet, streptozotocin and uninephrectomy, followed by Liraglutide treatment (0.4 mg/kg d). Additionally, HK-2 cells were incubated with 30 mM glucose and 200 µM palmitate for 24h, and exposed to different concentrations of 5-OP. In DKD rats, Liraglutide dramatically improved the renal tubule structure. It increased the Simpson index (F = 4.487, p = 0.035) and reduced the Actinobacteria-to-Bacteroidetes ratio (F = 6.189, p = 0.014). At the genus level, Liraglutide increased the relative abundance of Clostridium, Oscillospira, Sarcina, SMB53, and 02d06 while decreasing that of Allobaculum. Meanwhile, 13 metabolites were significantly altered after Liraglutide treatment. Multi-omics analysis found that 5-OP levels were positively correlated with Clostridium abundance but negatively correlated with renal injury related indicators. In HK-2 cells, 5-OP significantly reduced the ELD in a dose-dependent manner through inhibiting the expression of SREBP1 and FAS. Overall, the renoprotective effect of Liraglutide in DKD rats is linked to the improvement of the gut microbiota composition and increased serum 5-OP levels, which may reduce ELD in renal tubular cells by lowering lipid synthesis.

18.
ACS Chem Neurosci ; 15(17): 3090-3105, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39140296

RESUMEN

Ischemic stroke is a serious condition that results in high rates of illness and death. Anaerobic glycolysis becomes the primary means of providing energy to the brain during periods of low oxygen levels, such as in the aftermath of an ischemic stroke. This process is essential for maintaining vital brain functions and has significant implications for recovery following a stroke. Energy supply by anaerobic glycolysis and acidosis caused by lactic acid accumulation are important pathological processes after ischemic stroke. Numerous natural products regulate glucose and lactate, which in turn modulate anaerobic glycolysis. This article focuses on the relationship between anaerobic glycolysis and ischemic stroke, as well as the associated signaling pathways and natural products that play a therapeutic role. These natural products, which can regulate anaerobic glycolysis, will provide new avenues and perspectives for the treatment of ischemic stroke in the future.


Asunto(s)
Productos Biológicos , Glucólisis , Accidente Cerebrovascular Isquémico , Transducción de Señal , Humanos , Glucólisis/fisiología , Glucólisis/efectos de los fármacos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales , Anaerobiosis/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamiento farmacológico
19.
Sci Rep ; 14(1): 20199, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215105

RESUMEN

Temozolomide (TMZ) resistance is a major challenge in the treatment of glioblastoma (GBM). Tumour reproductive cells (TRCs) have been implicated in the development of chemotherapy resistance. By culturing DBTRG cells in three-dimensional soft fibrin gels to enrich GBM TRCs and performing RNA-seq analysis, the expression of stanniocalcin-1 (STC), a gene encoding a secreted glycoprotein, was found to be upregulated in TRCs. Meanwhile, the viability of TMZ-treated TRC cells was significantly higher than that of TMZ-treated 2D cells. Analysis of clinical data from CGGA (Chinese Glioma Genome Atlas) database showed that high expression of STC1 was closely associated with poor prognosis, glioma grade and resistance to TMZ treatment, suggesting that STC1 may be involved in TMZ drug resistance. The expression of STC1 in tissues and cells was examined, as well as the effect of STC1 on GBM cell proliferation and TMZ-induced DNA damage. The results showed that overexpression of STC1 promoted and knockdown of STC1 inhibited TMZ-induced DNA damage. These results were validated in an intracranial tumour model. These data revealed that STC1 exerts regulatory functions on MGMT expression in GBM, and provides a rationale for targeting STC1 to overcome TMZ resistance.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glicoproteínas , Temozolomida , Animales , Femenino , Humanos , Masculino , Ratones , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glicoproteínas/metabolismo , Glicoproteínas/genética , Temozolomida/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Int Immunopharmacol ; 140: 112857, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116491

RESUMEN

Chinese1 is the predominant Toxoplasma gondii lineage in China, and significant phenotypic differences are observed within the lineage. WH3 and WH6 are two representative strains of Chinese 1, which exhibit divergent virulence and pathogenicity in mice. However, virulence determinants and their modulating mechanisms remain elusive. A global genome expression analysis of the WH3 and WH6 transcriptional profiles identified microneme secretory protein 6 (MIC6), which may be associated with the phenotypic difference observed in WH3. In the present study, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome-editing technique was used to generate a T. gondii microneme secretory protein (TgMIC6) knockout in WH3. Wild-type mice and different mouse and human cell lines were infected with the WH3, WH3-Δmic6, and WH6 strains. The survival rate of mice, related cytokine levels in serum, and the proliferation of parasites were observed. These results suggested that TgMIC6 is an important effector molecule that determines the differential virulence of WH3 in vivo and in vitro. Furthermore, MIC6 may enhance WH3 virulence via inhibition of host cell autophagy and activation of key molecules in the epidermal growth factor receptor (EGFR)-Akt-mammalian target of rapamycin (mTOR) classical autophagy pathway. CD40L was cleared in vivo by i.p injection of CD40L monoclonal antibody, and it was found that the virulence of WH3-Δmic6 to mice was restored to a certain extent in the absence of CD40L. This study elucidates the virulence determinants and immune escape strategies of Toxoplasma gondii in China. Moreover, these data will aid the development of effective strategies for the prevention and control of toxoplasmosis.


Asunto(s)
Autofagia , Proteínas Protozoarias , Toxoplasma , Animales , Femenino , Humanos , Ratones , Línea Celular , China , Sistemas CRISPR-Cas , Citocinas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Fenotipo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Toxoplasma/inmunología , Toxoplasma/genética , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis Animal/inmunología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA