Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Bioorg Chem ; 148: 107439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754310

RESUMEN

PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Relación Dosis-Respuesta a Droga , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Nucleares
2.
Life Sci ; 342: 122538, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428571

RESUMEN

Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.


Asunto(s)
Asma , Hipertensión Pulmonar , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Fibrosis Pulmonar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Asma/patología
3.
Psychiatry Clin Neurosci ; 78(3): 197-208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38063052

RESUMEN

BACKGROUNDS: Anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune disorder characterized by prominent psychiatric symptoms. Although the role of NMDAR antibodies in the disease has been extensively studied, the phenotype of B cell subsets is still not fully understood. METHODS: We utilized single-cell RNA sequencing, single-cell B cell receptor sequencing (scBCR-seq), bulk BCR sequencing, flow cytometry, and enzyme-linked immunosorbent assay to analyze samples from both NMDAR-E patients and control individuals. RESULTS: The cerebrospinal fluid (CSF) of NMDAR-E patients showed significantly increased B cell counts, predominantly memory B (Bm) cells. CSF Bm cells in NMDAR-E patients exhibited upregulated expression of differential expression genes (DEGs) associated with immune regulatory function (TNFRSF13B and ITGB1), whereas peripheral B cells upregulated DEGs related to antigen presentation. Additionally, NMDAR-E patients displayed higher levels of IgD- CD27- double negative (DN) cells and DN3 cells in peripheral blood (PB). In vitro, DN1 cell subsets from NMDAR-E patients differentiated into DN2 and DN3 cells, while CD27+ and/or IgD+ B cells (non-DN) differentiated into antibody-secreting cells (ASCs) and DN cells. NR1-IgG antibodies were found in B cell culture supernatants from patients. Differential expression of B cell IGHV genes in CSF and PB of NMDAR-E patients suggests potential antigen class switching. CONCLUSION: B cell subpopulations in the CSF and PB of NMDAR-E patients exhibit distinct compositions and transcriptomic features. In vitro, non-DN cells from NMDAR-E can differentiate into DN cells and ASCs, potentially producing NR1-IgG antibodies. Further research is necessary to investigate the potential contribution of DN cell subpopulations to NR1-IgG antibody production.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Inmunoglobulina G/líquido cefalorraquídeo , Receptores de N-Metil-D-Aspartato/genética , Fenotipo , Análisis de Secuencia de ARN
4.
Eur J Med Chem ; 264: 115943, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039793

RESUMEN

PARP-1 is a crucial factor in repairing DNA single strand damage and maintaining genomic stability. However, the use of PARP-1 inhibitors is limited to combination with chemotherapy or radiotherapy, or as a single agent for indications carrying HRR defects. The ubiquitin-proteasome system processes the majority of cellular proteins and is the principal manner by which cells regulate protein homeostasis. Proteasome inhibitors can cooperate with PARP-1 inhibitors to inhibit DNA homologous recombination repair function. In this study, we designed and synthesized the first dual PARP-1 and proteasome inhibitor based on Olaparib and Ixazomib. Both compounds 42d and 42i exhibited excellent proliferation inhibition and dual-target synergistic effects on cells that were insensitive to PARP-1 inhibitors. Further mechanistic evaluations revealed that 42d and 42i could inhibit homologous recombination repair function by down-regulating the expression of BRCA1 and RAD51. Additionally, 42i induced more significant apoptosis and showed better inhibitory effect on cell proliferation in clonal formation experiments in breast cancer cells than 42d. In summary, our study presented a new class of dual PARP-1/proteasome inhibitors with significant synergistic effects for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteasoma/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal , Línea Celular Tumoral , ADN , Ftalazinas/farmacología , Ftalazinas/uso terapéutico
5.
Biochem Biophys Res Commun ; 694: 149388, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38150917

RESUMEN

Despite progress in the application of checkpoint immunotherapy against various tumors, attempts to utilize immune checkpoint blockade (ICB) agents in triple negative breast cancer (TNBC) have yielded limited clinical benefits. The low overall response rate of checkpoint immunotherapy in TNBC may be attributed to the immunosuppressive tumor microenvironment (TME). In this study, we investigated the role of mitogen-associated kinase TTK in reprogramming immune microenvironment in TNBC. Notably, TTK inhibition by BAY-1217389 induced DNA damage and the formation of micronuclei containing dsDNA in the cytosol, resulting in elicition of STING signal pathway and promoted antitumor immunity via the infiltration and activation of CD8+ T cells. Moreover, TTK inhibition also upregulated the expression of PD-L1, demonstrating a synergistic effect with anti-PD1 therapy in 4T1 tumor-bearing mice. Taken together, TTK inhibition facilitated anti-tumor immunity mediated by T cells and enhanced sensitivity to PD-1 blockade, providing a rationale for the combining TTK inhibitors with immune checkpoint blockade in clinical trials.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Antígeno B7-H1 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral
6.
Microbiol Spectr ; : e0472122, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698416

RESUMEN

About a quarter of the world's population is infected with Mycobacterium tuberculosis, equivalent to about two billion people. With the emergence of multidrug-resistant tuberculosis, those existing anti-tuberculosis drugs no longer meet the demand for cure anymore; there is an urgent need for the development of new anti-tuberculosis drugs. Decaprenylphosphoryl-ß-D-ribose 2´-epimerase (DprE1) has been proven to be a potential antimycobacterial target, and several inhibitors have entered clinical trial. Herein, we designed and synthesized a series of compounds based on the indole and benzomorpholine by using the strategy of scaffold hopping. The preferred compound B18 showed strong antimycobacterial activity in H37Rv and drug-resistant clinical isolates. In addition, compound B18 did not exhibit antimycobacterial efficacy against other species of strains. Subsequently, the target of B18 was identified as DprE1 by analyzing spontaneous compound-resistant mutation data, and a docking study was performed to illustrate the binding mode between B18 and DprE1. In general, compound B18 is compatible to current DprE1 inhibitors, even higher phosphodiesterase 6C selectivity and plasma protein binding rate, which represent a new type of effective reversible DprE1 inhibitor. IMPORTANCE Drug therapy remains the cornerstone of tuberculosis (TB) treatment, yet first-line anti-tuberculosis drugs are associated with significant adverse effects that can compromise patient outcomes. Moreover, prolonged and widespread use has led to an alarming rise in drug-resistant strains of Mycobacterium tuberculosis, including multidrug-resistant [MDR-tuberculosis (TB)] and extensively drug-resistant (XDR-TB) forms. Urgent action is needed to develop novel anti-tuberculosis agents capable of overcoming these challenges. We report that compound B18, a decaprenylphosphoryl-ß-D-ribose 2´-epimerase inhibitor with a benzomorpholine backbone, exhibits potent activity against not only the non-pathogenic strain H37Ra, but also the pathogenic strain H37Rv and clinical MDR and XDR strains. Preliminary druggability studies indicate that B18 possesses high safety and acceptable pharmacokinetic properties, rendering it a promising candidate for further development as a novel anti-tuberculosis agent.

7.
Eur J Med Chem ; 258: 115628, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37437349

RESUMEN

Fibroblast growth factor receptor 4 (FGFR4) has been proved to be an effective target for cancer therapy. Aberration in FGF19/FGFR4 signaling is oncogenic driving force in human hepatocellular carcinoma (HCC). FGFR4 gatekeeper mutations induced acquired resistance remains an unmet clinical challenge for HCC treatment. In this study, a series of 1H-indazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. These new derivatives showed significant FGFR4 inhibitory and antitumor activities, among which compound 27i was demonstrated to be the most potent compound (FGFR4 IC50 = 2.4 nM). Remarkably, compound 27i exhibited no activity against a panel of 381 kinases at 1 µM. Additionally, compound 27i displayed nanomolar IC50s against huh7 (IC50 = 21 nM) and two mutant cell lines, BaF3/ETV6-FGFR4-V550L and BaF3/ETV6-FGFR4-N535K (IC50 = 2.5/171 nM). Meanwhile, compound 27i exhibited potent antitumor potency (TGI: 83.0%, 40 mg/kg, BID) in Huh7 xenograft mouse models with no obvious toxicity observed. Overall, compound 27i was identified as a promising preclinical candidate for overcoming FGFR4 gatekeeper mutations for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proliferación Celular
8.
Heliyon ; 9(5): e15152, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251840

RESUMEN

Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.

9.
Expert Opin Ther Pat ; 33(4): 293-308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095742

RESUMEN

INTRODUCTION: EZH2 is an important epigenetic regulator that forms the PRC2 complex with SUZ12, EED and RbAp46/48. As the key catalytic subunit of PRC2, EZH2 regulates the trimethylation of histone H3K27, which in turn promotes chromatin condensation and represses the transcription of relevant target genes. EZH2 overexpression and mutations are strictly related to tumor proliferation, invasion and metastasis. Currently, a large number of highly specific EZH2 inhibitors have been developed and some have already been in clinical trials. AREAS COVERED: The aim of the present review is to provide an overview of the molecular mechanisms of EZH2 inhibitors and to highlight the research advances in the patent literature published from 2017 to date. A search of the literature and patents for EZH2 inhibitors and degraders was performed using the Web of Science, SCIFinder, WIPO, USPTO, EPO and CNIPA databases. EXPERT OPINION: In recent years, a great number of structurally diverse EZH2 inhibitors have been identified, including EZH2 reversible inhibitors, EZH2 irreversible inhibitors, EZH2-based dual inhibitors and EZH2 degraders. Despite the multiple challenges, EZH2 inhibitors offer promising potential for the treatment of various diseases, such as cancers.


Asunto(s)
Neoplasias , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Inhibidores Enzimáticos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Patentes como Asunto
10.
Biochem Pharmacol ; 210: 115493, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898415

RESUMEN

The incidence and mortality rate of malignant melanoma are increasing worldwide. Metastasis reduces the efficacy of current melanoma therapies and leads to poor prognosis for patients. EZH2 is a methyltransferase that promotes the proliferation, metastasis, and drug resistance of tumor cells by regulating transcriptional activity. EZH2 inhibitors could be effective in melanoma therapies. Herein, we aimed to investigate whether the pharmacological inhibition of EZH2 by ZLD1039, a potent and selective S-adenosyl-l-methionine-EZH2 inhibitor, suppresses tumor growth and pulmonary metastasis in melanoma cells. Results showed that ZLD1039 selectively reduced H3K27 methylation in melanoma cells by inhibiting EZH2 methyltransferase activity. Additionally, ZLD1039 exerted excellent antiproliferative effects on melanoma cells in 2D and 3D culture systems. Administration of ZLD1039 (100 mg/kg) by oral gavage caused antitumor effects in the A375 subcutaneous xenograft mouse model. RNA sequencing and GSEA revealed that the ZLD1039-treated tumors exhibited changes in the gene sets enriched from the "Cell Cycle" and "Oxidative Phosphorylation", whereas the "ECM receptor interaction" gene set had a negative enrichment score. Mechanistically, ZLD1039 induced G0/G1 phase arrest by upregulating p16 and p27 and inhibiting the functions of the cyclin D1/CDK6 and cyclin E/CDK2 complexes. Moreover, ZLD1039 induced apoptosis in melanoma cells via the mitochondrial reactive oxygen species apoptotic pathway, consistent with the changes in transcriptional signatures. ZLD1039 also exhibited excellent antimetastatic effects on melanoma cells in vitro and in vivo. Our data highlight that ZLD1039 may be effective against melanoma growth and pulmonary metastasis and thus could serve as a therapeutic agent for melanoma.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Proliferación Celular , Melanoma/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Metiltransferasas , Línea Celular Tumoral , Apoptosis , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
11.
Cancer ; 129(10): 1492-1501, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36807239

RESUMEN

BACKGROUND: There is a lack of studies assessing the survival of repeat sentinel lymph node biopsy (rSLNB) versus axillary lymph node dissection (ALND) for surgical axillary staging among patients with ipsilateral breast tumor recurrence (IBTR). METHODS: We retrospectively identified patients with IBTR from the Surveillance, Epidemiology, and End Results database from 2000 to 2017. The primary outcome was overall survival (OS) between the rSLNB and ALND groups. RESULTS: Of the 2141 women with IBTR after lumpectomy and SLNB, 524 did not receive surgical axillary staging (nonsurgery group) and 1617 patients who did undergo axilla surgery received either rSLNB or ALND as axillary staging (1268 with rSLNB and 349 with ALND). The 10-year OS rates were 61.9% for the nonsurgery and 73.8% for axilla surgery groups (p = .001). In the 1:1 matched cohorts, the 10-year OS rates were 61.4% for the nonsurgery and 69.1% for axilla surgery groups (p = .072). After adjusting for other factors, axillary surgery treatment of IBTR was an independent favorable factor for OS (hazard ratio [HR], 0.71; 95% CI, 0.56-0.90; p = .004). Within the axilla surgery group, rSLNB presented a comparable 10-year OS to the ALND cohort (log-rank test p = .054). Multivariate Cox analysis, as well as subgroup analysis, showed that rSLNB had a similar benefit to ALND (10-year OS; HR, 1.18; 95% CI, 0.88-1.58; p = .268). CONCLUSIONS: The results of this cohort study suggested that receiving surgical axillary staging was associated with better survival of IBTR patients, and rSLNB had a similar long-term survival outcome as ALND. rSLNB might be considered for surgical axillary staging among patients with IBTR after lumpectomy and initial SLNB.


Asunto(s)
Neoplasias de la Mama , Ganglio Linfático Centinela , Humanos , Femenino , Biopsia del Ganglio Linfático Centinela/métodos , Recurrencia Local de Neoplasia/patología , Axila/patología , Estudios de Cohortes , Estudios Retrospectivos , Escisión del Ganglio Linfático/métodos , Ganglios Linfáticos/patología , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Ganglio Linfático Centinela/cirugía , Ganglio Linfático Centinela/patología , Estadificación de Neoplasias
12.
J Med Chem ; 66(3): 1725-1741, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36692394

RESUMEN

Enhancer of zeste homologue 2 (EZH2) is the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2), which plays an important role in post-translational modifications of histones. In this study, we designed and synthesized a new series EZH2 covalent inhibitors that have rarely been reported. Biochemical studies and mass spectrometry provide information that SKLB-03220 could covalently bind to the S-adenosylmethionine (SAM) pocket of EZH2. Besides, SKLB-03220 was highly potent for EZH2MUT, while exhibiting weak activities against other tested histone methyltransferases (HMTs) and kinases. Moreover, SKLB-03220 displayed noteworthy potency against ovarian cancer cell lines and continuously abolished H3K27me3 after washing out. Furthermore, oral administration of SKLB-03220 significantly inhibited tumor growth in PA-1 xenograft model without obvious adverse effects. Taken together, SKLB-03220 is a potent, selective EZH2 covalent inhibitor with noteworthy anticancer efficacy both in vitro and in vivo.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Complejo Represivo Polycomb 2/metabolismo , Piridonas/farmacología , Piridonas/uso terapéutico , Piridonas/química
13.
Eur J Med Chem ; 247: 115032, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566712

RESUMEN

PRMT6 is a member of the protein arginine methyltransferase family, which is involved in a variety of physiological processes and plays an important role in the occurrence and development of tumors. Due to the high homology of type Ⅰ PRMTs and the two close binding sites of the SAM pocket and the substrate pocket, selective PRMT6 inhibitors have rarely been reported. In this study, a series of (5-phenylpyridin-3-yl)methanamine derivatives were designed and synthesized, which could form hydrogen bonding interactions with the unique Glu49 of PRMT6, thereby improving the selectivity of the compounds for PRMT6. Among them, a25 had the best activity and selectivity, with more than 25-fold selectivity for PRMT1/8 and more than 50-fold selectivity for PRMT3/4/5/7, which was superior to these reported SAM competitive and substrate competitive PRMT6 inhibitors. Importantly, a25 could significantly inhibit the proliferation of various tumor cells and effectively induce apoptosis of cancer cells. Our data clarified that a25 is a promising selective PRMT6 inhibitor for cancer therapy which is worthy of further evaluation.


Asunto(s)
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Metilación , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras/metabolismo
14.
Eur J Med Chem ; 245(Pt 1): 114887, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36370549

RESUMEN

Monopolar spindle kinase 1 (Mps1), a core component of the spindle assembly checkpoint (SAC), plays a crucial role in the transition of cells from mid-to late mitosis. As an attractive therapeutic target, inhibition of Mps1 induces cell cycle arrest and apoptosis in a variety of tumors, including breast cancer. However, early clinical development of Mps1 inhibitors remains unsatisfactory. Here, we designed and synthesized a new class of Mps1 inhibitors with 7H-pyrrolo[2,3-d]pyrimidine structure using a scaffold hopping approach. Structure-activity relationship (SAR) revealed that 12 is a potent Mps1 inhibitor (IC50 = 29 nM), which inhibited phosphorylation of Mps1 in vitro and in vivo. Treatment with 12 not only impeded proliferation of breast cancer cell lines, but also induced cell cycle arrest and apoptosis of MCF-7 and 4T1 cells. 12 suppressed tumor growth in vivo, and no obvious toxicities were observed. These results demonstrated the potential of Mps1 inhibitor 12 for the treatment of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Pirimidinas , Femenino , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Ciclo Celular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Línea Celular Tumoral , Diseño de Fármacos
15.
J Med Chem ; 65(24): 16541-16569, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36449947

RESUMEN

The activation of the STAT signal after incubation with the HDAC inhibitor represents a key mechanism causing resistance to HDAC inhibitors in some solid tumor cells, while the FGFR inhibitor could downregulate the level of pSTAT3. Inspired by the therapeutic prospect of FGFR/HDAC dual inhibitors, we designed and synthesized a series of quinoxalinopyrazole hydroxamate derivatives as FGFR/HDAC dual inhibitors. Among them, compound 10e potently inhibited FGFR1-4 and HDAC1/2/6/8 and presented improved antiproliferative effects of tumor cells. Further studies indicated that 10e also downregulated the expression of pSTAT3, potentially overcoming resistance to HDAC inhibitors. What's more, 10e significantly inhibited the tumor growth in HCT116 and SNU-16 xenograft models with favorable pharmacokinetic profiles. Collectively, these results supported that 10e could be a new drug candidate for malignant tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Línea Celular Tumoral , Histona Desacetilasa 1/metabolismo
16.
Front Pharmacol ; 13: 998199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210834

RESUMEN

Gastric cancer (GC) is one of the most malignant cancers and is estimated to be fifth in incidence ratio and the third leading cause of cancer death worldwide. Despite advances in GC treatment, poor prognosis and low survival rate necessitate the development of novel treatment options. Fibroblast growth factor receptors (FGFRs) have been suggested to be potential targets for GC treatment. In this study, we report a novel selective FGFR inhibitor, RK-019, with a pyrido [1, 2-a] pyrimidinone skeleton. In vitro, RK-019 showed excellent FGFR1-4 inhibitory activities and strong anti-proliferative effects against FGFR2-amplification (FGFR2-amp) GC cells, including SNU-16 and KATO III cells. Treatment with RK-019 suppressed phosphorylation of FGFR and its downstream pathway proteins, such as FRS2, PLCγ, AKT, and Erk, resulting in cell cycle arrest and induction of apoptosis. Furthermore, daily oral administration of RK-019 could attenuate tumor xenograft growth with no adverse effects. Here, we reported a novel specific FGFR inhibitor, RK-019, with potent anti-FGFR2-amp GC activity both in vitro and in vivo.

17.
Am J Cancer Res ; 12(8): 3913-3931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119814

RESUMEN

Triple-negative breast cancer (TNBC) is highly heterogeneous in prognosis. The current TNM staging system shows its limitation in accurate risk evaluation. Immune response and immune cell abundances in the tumor immune microenvironment (TIME) are critical for cancer progression, clinical outcome and therapeutic response in TNBC. However, there is a lack of an effective risk model based on the overall transcriptional alterations relevant to different immune responses. In this study, multiple bioinformatics and statistical approaches were used to develop an immune-related risk (IRR) signature based on the differentially expressed genes between the immune-active and immune-inactive samples. The IRR model showed great performance in risk stratification, immune landscape evaluation and immunotherapy response prediction. Compared with the low-IRR group, the high-IRR group exhibited a poorer prognosis, less cytotoxic cell infiltration, higher M2/M1 ratio and upregulated glycolytic activity. Moreover, the high-IRR group showed more resistance to immunotherapy than the low-IRR group. Our study reveals that the IRR model may be a promising tool to help clinicians assess risk and optimize treatment for TNBC patients.

19.
Breast ; 63: 9-15, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35245747

RESUMEN

BACKGROUND: There is a lack of studies examining the long-term trend and survival of axillary surgery for breast cancer patients with sentinel node metastasis, especially for the patients with 3-5 node metastases. METHODS: Breast cancer patients with 1-5 sentinel node metastases from the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2016. Our study presented the trend of axillary surgery and assessed the long-term survival of sentinel lymph node biopsy (SLNB) alone vs axillary lymph node dissection (ALND) for those patients. RESULTS: Of the 41,996 patients diagnosed with T1-2 breast cancer after lumpectomy and radiation included, 34,940 had 1-2 sentinel node metastases and 7056 had 3-5 sentinel node metastases. The percentage of patients undergoing SLNB alone increased from 22.4% in 2000 to 81.0% in 2016 for patients with 1-2 sentinel node metastases, and quadrupled from 5.2% in 2009 to 20.6% in 2016 for those with 3-5 sentinel node metastases. Completion of ALND did not benefit the long-term survival of 1-2 sentinel node metastasis patients (hazard ratio [HR] = 1.02, P = 0.539), but improved the long-term survival of 3-5 node metastasis patients (HR = 0.73, P < 0.001). Subgroup analysis demonstrated the inferiority of SLNB to ALND in all subgroups of 3-5 sentinel node metastases. CONCLUSION: For patients with T1-2 breast cancer after lumpectomy and radiation, SLNB alone was an efficient and safe surgical choice for 1-2 sentinel node metastases but not for 3-5 sentinel node metastases. It is worth noting that for patients with 3-5 node metastasis, the proportion of omitted ALND quadrupled after 2009.


Asunto(s)
Neoplasias de la Mama , Linfadenopatía , Ganglio Linfático Centinela , Axila/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Escisión del Ganglio Linfático/métodos , Metástasis Linfática , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/cirugía , Biopsia del Ganglio Linfático Centinela/métodos
20.
Pharmacol Res ; 178: 106159, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35259482

RESUMEN

Enhancer of zeste homologue 2 (EZH2, also known as KMT6A) is found to be a member of the histone lysine methyltransferase family. An increasing number of studies have shown that in addition to methylating histones, EZH2 plays a vital role in a variety of ways. The methylated substrates of EZH2 also include GATA4, AR/AR-related proteins, STAT3, Talin protein, and RORα. Meanwhile, EZH2 has been reported to form complexes with some proteins to perform other important biological functions as well as methylation. These complexes include: the EZH2-RelA-RelB complex, EZH2-ER-ß-catenin complex, and ß-catenin-PAF-EZH2-Mediator complex. Herein, we focus on the classical and non-classical functions of EZH2, and summarize anti-EZH2 therapeutic strategies. Finally, we highlight that understanding the physiological and pathological functions of EZH2 in specific indications can help the development of inhibitors or degraders.


Asunto(s)
Histonas , beta Catenina , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Metilación , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...