Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 11(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37755744

RESUMEN

Lead (Pb), a hazardous heavy metal, can damage the health of organisms. However, it is not clear whether Pb can damage chicken cerebellums and thalami. Selenium (Se), an essential nutrient for organisms, has a palliative effect on Pb poisoning in chickens. In our experiment, a model of chickens treated with Pb and Se alone and in combination was established to investigate the molecular mechanism of Se alleviating Pb-caused damage in both chicken cerebellums and thalami. Our morphological results indicated that Pb caused apoptotic lesions, such as mitochondrial and nuclear damage. Further, the anti-apoptotic gene Bcl-2 decreased; on the contrary, four pro-apoptotic genes (p53, Bax, Cyt c, and Caspase-3) increased under Pb treatment, meaning that Pb caused apoptosis via the p53-Cyt c-Caspase-3 pathway. Furthermore, we further demonstrated that Pb elevated four HSPs (HSP27, HSP40, HSP70, and HSP90), as well as HSP70 took part in the molecular mechanism of Pb-caused apoptosis. In addition, we found that Pb exposure led to oxidative stress via up-regulating the oxidant H2O2 and down-regulating four antioxidants (CAT, SOD, GST, and GPx). Moreover, Pb decreased three Se-containing factors (Txnrd1, Txnrd2, and Txnrd3), further confirming that Pb caused oxidative stress. Interestingly, Se supplementation reversed the above changes caused by Pb and alleviated Pb-induced oxidative stress and apoptosis. A time dependency was demonstrated for Bcl-2, Bax, and Cyt c in the cerebellums, as well as CAT, GPx, and p53 in the thalami of Pb-exposed chickens. HSP70 in cerebellums and HSP27 in thalami were more sensitive than those in thalami and cerebellums, respectively, under Pb exposure. Pb-induced apoptosis of thalami was more severe than cerebellums. In conclusion, after Pb treatment, Txnrds mediated oxidative stress, oxidative stress up-regulated HSPs, and finally, HSP70 triggered apoptosis. Se supplementation antagonized Pb-induced oxidative stress and apoptosis via the mitochondrial pathway and selenoproteins in chicken cerebellums and thalami. This study provides new information for the mechanism of environmental pollutant poisoning and the detoxification of Se on abiotic stress.

2.
Fish Shellfish Immunol ; 138: 108853, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245677

RESUMEN

Cadmium (Cd), a toxic heavy metal pollutant, is a threat to human and eatable fish health. Common carps are widely cultivated and eaten by humans. However, there are no reports about Cd-damaged common carp hearts. Our experiment attempted to investigate the cardiotoxicity of Cd to common carps by establishing a common carp Cd exposure model. Our results showed that Cd injured hearts. Moreover, Cd treatment induced autophagy via miR-9-5p/Sirt1/mTOR/ULK1 pathway. Cd exposure caused oxidant/antioxidant imbalance and oxidative stress; and led to energetic impairment. Energetic impairment partook in oxidative stress-mediated autophagy through AMPK/mTOR/ULK1 pathway. Furthermore, Cd caused mitochondrial division/fusion imbalance and resulted in inflammatory injury via NF-κB-COX-2-PTGEs and NF-κB-COX-2-TNF-α pathways. Oxidative stress mediated mitochondrial division/fusion imbalance, further induced inflammation and autophagy via OPA1/NF-κB-COX-2-TNF-α-Beclin1 and OPA1/NF-κB-COX-2-TNF-α/P62 pathways under Cd treatment. Taken together, miR-9-5p, oxidative stress, energetic impairment, mitochondrial division/fusion imbalance, inflammation, and autophagy participated in the mechanism of Cd-cardiotoxicity to common carps. Our study revealed harmful effect of Cd on hearts, and provided new information for researches of environmental pollutant toxicity.


Asunto(s)
Carpas , MicroARNs , Humanos , Animales , Carpas/metabolismo , Cadmio/toxicidad , FN-kappa B/metabolismo , Cardiotoxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2 , Estrés Oxidativo , MicroARNs/metabolismo , Inflamación/inducido químicamente , Inflamación/veterinaria , Serina-Treonina Quinasas TOR/metabolismo , Autofagia
3.
Anim Biotechnol ; : 1-12, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542527

RESUMEN

Lead (Pb), a toxic environmental pollutant, is hazardous to the health of humans and birds. Bursa of Fabricius (BF) is a unique organ of birds. Toxic substances can attack BF and induce proteotoxicity. Increased heat shock proteins (HSPs) can induce oxidative damage. Selenium (Se) can alleviate harmful substance-caused oxidative damage. This study aimed to investigate whether Pb can cause oxidative damage and proteotoxicity, as well as Se reverse Pb-caused chicken BF toxicity. A model of chickens treated with Se and Pb alone and in combination was established. BFs were collected on days 30, 60, and 90. H&E and qRT-PCR were performed to observe the microstructure and to detect HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA levels, respectively, in BFs. Multivariate correlation analysis and principal component analysis were conducted to explore the correlation among the five HSPs. In our results, Pb caused BF damage and up-regulated the five HSPs at three time points, causing oxidative damage and proteotoxicity via HSP27-HSP40-HSP70-HSP90 pathway. Furthermore, Pb caused time-dependent stress on HSP27, HSP40, HSP60, and HSP70. In addition, Se relieved Pb-caused damage and up-regulation of HSPs. Taken together, we concluded that Se alleviated Pb-caused oxidative injury and proteotoxicity in chicken BFs via the HSP27-HSP40-HSP70-HSP90 pathway.

4.
Ecotoxicol Environ Saf ; 242: 113944, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926411

RESUMEN

4-tert-butylphenol (4-tBP) is a toxic environmental pollutant with moderate bioaccumulation, environmental persistence, and long-term toxicity. Its toxicity to aquatic organisms has become an issue of concern. However, the molecular mechanism of 4-tBP toxicity to aquatic organisms remained unclear. Liver is a target organ for environmental pollutants. Here, we established 4-tBP-exposed toxicity model in vivo and primary hepatocyte model in vitro in common carp (Cyprinus carpio L.). We found increased hepatic-somatic index (HSI) and abnormal serum biochemical indexes (ALT, AST, and LDH) after 4-tBP exposure, indicating liver damage. We further revealed that 4-tBP damaged the structural integrity of the livers with typical features of ferroptosis. Based on toxicogenomics analysis, we found ferroptosis is likely to be involved in the mechanism of 4-tBP-induced liver damage. Moreover, our in vivo and in vitro experiment provided evidences that 4-tBP-exposure led to excess oxidative stress, iron overload, decreased MMP, and abnormal expression of ferroptosis-related factors. Interestingly, ferrostatin-1 (Fer-1, a ferroptosis inhibitor) pretreatment alleviated above changes. In summary, we demonstrated that 4-tBP triggered hepatocytes ferroptosis via oxidative stress, iron overload, SLC7A11/GSH/GPX4 axis, and ATF4/HSPA5/GPX4 axis. For the first time, we discovered that Fer-1 can ameliorate the toxicity of 4-tBP, which needs more investigations. Our results provided a scientific basis of molecular mechanism of 4-tBP-induced fish poisoning.


Asunto(s)
Carpas , Ferroptosis , Sobrecarga de Hierro , Factor de Transcripción Activador 4 , Sistema de Transporte de Aminoácidos y+ , Animales , Chaperón BiP del Retículo Endoplásmico , Glutatión , Hepatocitos , Estrés Oxidativo , Fenoles , Fosfolípido Hidroperóxido Glutatión Peroxidasa
5.
Ecotoxicol Environ Saf ; 226: 112833, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600291

RESUMEN

Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning.


Asunto(s)
Manganeso , FN-kappa B , Animales , Pollos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Hígado/metabolismo , Manganeso/toxicidad , FN-kappa B/genética , Estrés Oxidativo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...