Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 8(3): 267-273.e3, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30878356

RESUMEN

Systems biology requires not only genome-scale data but also methods to integrate these data into interpretable models. Previously, we developed approaches that organize omics data into a structured hierarchy of cellular components and pathways, called a "data-driven ontology." Such hierarchies recapitulate known cellular subsystems and discover new ones. To broadly facilitate this type of modeling, we report the development of a software library called the Data-Driven Ontology Toolkit (DDOT), consisting of a Python package (https://github.com/idekerlab/ddot) to assemble and analyze ontologies and a web application (http://hiview.ucsd.edu) to visualize them. Using DDOT, we programmatically assemble a compendium of ontologies for 652 diseases by integrating gene-disease mappings with a gene similarity network derived from omics data. For example, the ontology for Fanconi anemia describes known and novel disease mechanisms in its hierarchy of 194 genes and 74 subsystems. DDOT provides an easy interface to share ontologies online at the Network Data Exchange.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Redes Reguladoras de Genes , Programas Informáticos , Ontología de Genes , Humanos
2.
Nat Genet ; 50(4): 613-620, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610481

RESUMEN

Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These 'somatic eQTLs' (expression quantitative trait loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines and that increasing DAAM1 expression leads to invasive cell migration. Collectively, the noncoding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer.


Asunto(s)
Genes Relacionados con las Neoplasias , Mutación , Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Isomerasas Aldosa-Cetosa/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas de Microfilamentos , Proteínas de Unión al GTP Monoméricas/genética , Invasividad Neoplásica/genética , Neoplasias/metabolismo , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Secuenciación Completa del Genoma , Proteínas de Unión al GTP rho
3.
Cell Syst ; 6(4): 484-495.e5, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29605183

RESUMEN

Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall. A general tendency is that performance scales with network size, suggesting that new interaction discovery currently outweighs the detrimental effects of false positives. Correcting for size, we find that the DIP network provides the highest efficiency (value per interaction). Based on these results, we create a parsimonious composite network with both high efficiency and performance. This work provides a benchmark for selection of molecular networks in human disease research.


Asunto(s)
Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Algoritmos , Biología Computacional , Genoma Humano , Humanos
4.
Nat Methods ; 15(4): 290-298, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29505029

RESUMEN

Although artificial neural networks are powerful classifiers, their internal structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an opportunity to design visible neural networks (VNNs) that couple the model's inner workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 2,526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During simulation, genotypes induce patterns of subsystem activities, enabling in silico investigations of the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can be validated, and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of disease, drug resistance and synthetic life.


Asunto(s)
Fenómenos Fisiológicos Celulares , Aprendizaje Profundo , Redes Neurales de la Computación , Simulación por Computador , Regulación de la Expresión Génica , Genotipo , Humanos
5.
Pac Symp Biocomput ; 23: 602-613, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29218918

RESUMEN

Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated with human disease. Here we present an integrative natural language processing system which infers common functions for a gene set through automatic mining of the scientific literature with biological networks. This system links genes with associated literature phrases and combines these links with protein interactions in a single heterogeneous network. Multiscale functional annotations are inferred based on network distances between phrases and genes and then visualized as an ontology of biological concepts. To evaluate this system, we predict functions for gene sets representing known pathways and find that our approach achieves substantial improvement over the conventional text-mining baseline method. Moreover, our system discovers novel annotations for gene sets or pathways without previously known functions. Two case studies demonstrate how the system is used in discovery of new cancer-related pathways with ontological annotations.


Asunto(s)
Ontología de Genes/estadística & datos numéricos , Redes Reguladoras de Genes , Anotación de Secuencia Molecular/estadística & datos numéricos , Mapas de Interacción de Proteínas , Algoritmos , Biología Computacional/métodos , Minería de Datos/estadística & datos numéricos , Humanos , Procesamiento de Lenguaje Natural , Neoplasias/genética
6.
Genome Biol ; 18(1): 57, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28351423

RESUMEN

BACKGROUND: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. RESULTS: We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. CONCLUSIONS: This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Restricción Calórica , Enanismo/genética , Enanismo/metabolismo , Epigénesis Genética/efectos de los fármacos , Epigenómica , Hígado/metabolismo , Sirolimus/farmacología , Animales , Análisis por Conglomerados , Islas de CpG , Metilación de ADN , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/efectos de los fármacos , Longevidad/genética , Masculino , Ratones
7.
Mol Cell ; 65(4): 761-774.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28132844

RESUMEN

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.


Asunto(s)
Autofagia/genética , Redes Reguladoras de Genes , Genómica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biología de Sistemas/métodos , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Bases de Datos Genéticas , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Modelos Genéticos , Pichia/genética , Pichia/metabolismo , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Integración de Sistemas
8.
Cell Syst ; 2(2): 77-88, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26949740

RESUMEN

Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...