Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Am Heart Assoc ; 12(4): e028226, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36789878

RESUMEN

Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.


Asunto(s)
Cardiopatías Congénitas , Humanos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Factores de Transcripción/genética , Pueblo Asiatico , Etnicidad
2.
Front Genet ; 13: 933381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003331

RESUMEN

Bronchiectasis is the abnormal dilation of the airway which may be caused by various etiologies in children. Beyond the more recognized cause of bacterial and viral infections and primary immunodeficiencies, other genetic conditions such as cystic fibrosis and primary ciliary dyskinesia (PCD) can also contribute to the disease. Currently, there is still debate on whether genome sequencing (GS) or exome sequencing reanalysis (rES) would be beneficial if the initial targeted testing results returned negative. This study aims to provide a back-to-back comparison between rES and GS to explore the best integrated approach for the functional and genetics evaluation for patients referred for assessment of bronchiectasis. In phase 1, an initial 60 patients were analyzed by exome sequencing (ES) with one additional individual recruited later as an affected sibling for ES. Functional evaluation of the nasal nitric oxide test, transmission electron microscopy, and high-speed video microscopy were also conducted when possible. In phase 2, GS was performed on 30 selected cases with trio samples available. To provide a back-to-back comparison, two teams of genome analysts were alternatively allocated to GS or rES and were blinded to each other's analysis. The time for bioinformatics, analysis, and diagnostic utility was recorded for evaluation. ES revealed five positive diagnoses (5/60, 8.3%) in phase 1, and four additional diagnoses were made by rES and GS (4/30, 13%) during phase 2. Subsequently, one additional positive diagnosis was identified in a sibling by ES and an overall diagnostic yield of 10/61 (16.4%) was reached. Among those patients with a clinical suspicion of PCD (n = 31/61), the diagnostic yield was 26% (n = 8/31). While GS did not increase the diagnostic yield, we showed that a variant of uncertain significance could only be detected by GS due to improved coverage over ES and hence is a potential benefit for GS in the future. We show that genetic testing is an essential component for the diagnosis of early-onset bronchiectasis and is most effective when used in combination with functional tools such as TEM or HSVM. Our comparison of rES vs. GS suggests that rES and GS are comparable in clinical diagnosis.

3.
NPJ Genom Med ; 7(1): 23, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314707

RESUMEN

Traditional carrier screening has been utilized for the detection of carriers of genetic disorders. Since a comprehensive assessment of the carrier frequencies of recessive conditions in the Southern Chinese population is not yet available, we performed a secondary analysis on the spectrum and carrier status for 315 genes causing autosomal recessive disorders in 1543 Southern Chinese individuals with next-generation sequencing data, 1116 with exome sequencing and 427 with genome sequencing data. Our data revealed that 1 in 2 people (47.8% of the population) was a carrier for one or more recessive conditions, and 1 in 12 individuals (8.30% of the population) was a carrier for treatable inherited conditions. In alignment with current American College of Obstetricians and Gynecologists (ACOG) pan-ethnic carrier recommendations, 1 in 26 individuals were identified as carriers of cystic fibrosis, thalassemia, and spinal muscular atrophy in the Southern Chinese population. When the >1% expanded carrier screening rate recommendation by ACOG was used, 11 diseases were found to meet the criteria in the Southern Chinese population. Approximately 1 in 3 individuals (35.5% of the population) were carriers of these 11 conditions. If the 1 in 200 carrier frequency threshold is used, and additional seven genes would meet the criteria, and 2 in 5 individuals (38.7% of the population) would be detected as a carrier. This study provides a comprehensive catalogue of the carrier spectrum and frequency in the Southern Chinese population and can serve as a reference for careful evaluation of the conditions to be included in expanded carrier screening for Southern Chinese people.

4.
PLoS Genet ; 17(2): e1009323, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600428

RESUMEN

Preemptive pharmacogenetic testing has the potential to improve drug dosing by providing point-of-care patient genotype information. Nonetheless, its implementation in the Chinese population is limited by the lack of population-wide data. In this study, secondary analysis of exome sequencing data was conducted to study pharmacogenomics in 1116 Hong Kong Chinese. We aimed to identify the spectrum of actionable pharmacogenetic variants and rare, predicted deleterious variants that are potentially actionable in Hong Kong Chinese, and to estimate the proportion of dispensed drugs that may potentially benefit from genotype-guided prescription. The projected preemptive pharmacogenetic testing prescription impact was evaluated based on the patient prescription data of the public healthcare system in 2019, serving 7.5 million people. Twenty-nine actionable pharmacogenetic variants/ alleles were identified in our cohort. Nearly all (99.6%) subjects carried at least one actionable pharmacogenetic variant, whereas 93.5% of subjects harbored at least one rare deleterious pharmacogenetic variant. Based on the prescription data in 2019, 13.4% of the Hong Kong population was prescribed with drugs with pharmacogenetic clinical practice guideline recommendations. The total expenditure on actionable drugs was 33,520,000 USD, and it was estimated that 8,219,000 USD (24.5%) worth of drugs were prescribed to patients with an implicated actionable phenotype. Secondary use of exome sequencing data for pharmacogenetic analysis is feasible, and preemptive pharmacogenetic testing has the potential to support prescription decisions in the Hong Kong Chinese population.


Asunto(s)
Secuenciación del Exoma/métodos , Farmacogenética/métodos , Variantes Farmacogenómicas/genética , Prescripciones/estadística & datos numéricos , Alelos , Pueblo Asiatico/genética , Estudios de Cohortes , Frecuencia de los Genes , Genotipo , Hong Kong , Humanos , Farmacogenética/estadística & datos numéricos , Pruebas de Farmacogenómica/métodos , Pruebas de Farmacogenómica/estadística & datos numéricos , Fenotipo , Reproducibilidad de los Resultados
5.
J Hum Genet ; 66(6): 637-641, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33223521

RESUMEN

The use of exome and genome sequencing has increased rapidly nowadays. After primary analysis, further analysis can be performed to identify secondary findings that offer medical benefit for patient care. Multiple studies have been performed to evaluate secondary findings in different ethnicities. However, relevant data are limited in Chinese. Here, with the use of a cohort consisted of 1116 Hong Kong Chinese exome sequencing data, we evaluated the secondary findings in the 59 genes recommended by the American College of Medical Genetics and Genomics. Fifteen unique pathogenic or likely pathogenic variants in 17 individuals were identified, representing a frequency of 1.52% in our cohort. Although 20 individuals harboured pathogenic or likely pathogenic variants in recessive conditions, none carried bi-allelic mutations in the same gene. Our finding was in accordance with the estimation from the American College of Medical Genetics and Genomics that about 1% individuals harbour secondary findings.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genómica , Adolescente , Adulto , Alelos , Niño , China/epidemiología , Exoma , Femenino , Variación Genética/genética , Genoma Humano/genética , Hong Kong/epidemiología , Humanos , Hallazgos Incidentales , Masculino , Persona de Mediana Edad , Mutación/genética , Adulto Joven
6.
Circ Genom Precis Med ; 13(6): e003000, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33196317

RESUMEN

BACKGROUND: Human heterotaxy is a group of congenital disorders characterized by misplacement of one or more organs according to the left-right axis. The genetic causes of human heterotaxy are highly heterogeneous. METHODS: We performed exome sequencing in a cohort of 26 probands with heterotaxy followed by gene burden analysis for the enrichment of novel rare damaging mutations. Transcription activator-like effector nuclease was used to generate somatic loss-of-function mutants in a zebrafish model. Ciliary defects were examined by whole-mount immunostaining of acetylated α-tubulin. RESULTS: We identified a significant enrichment of novel rare damaging mutations in the CC2D1A gene. Seven occurrences of CC2D1A mutations were found to affect 4 highly conserved amino acid residues of the protein. Functional analyses in the transcription activator-like effector nuclease-mediated zebrafish knockout models were performed, and heterotaxy phenotypes of the cardiovascular and gastrointestinal systems in both somatic and germline mutants were observed. Defective cilia were demonstrated by whole-mount immunostaining of acetylated α-tubulin. These abnormalities were rescued by wild-type cc2d1a mRNA but not cc2d1a mutant mRNA, strongly suggesting a loss-of-function mechanism. On the other hand, overexpression of cc2d1a orthologous mutations cc2d1a P559L and cc2d1a G808V (orthologous to human CC2D1A P532L and CC2D1A G781V) did not affect embryonic development. CONCLUSIONS: Using a zebrafish model, we were able to establish a novel association of CC2D1A with heterotaxy and ciliary dysfunction in the F2 generation via a loss-of-function mechanism. Future mechanistic studies are needed for a better understanding of the role of CC2D1A in left-right patterning and ciliary dysfunction.


Asunto(s)
Alelos , Cilios/patología , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Síndrome de Heterotaxia/genética , Mutación/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Mutación de Línea Germinal/genética , Heterocigoto , Humanos , Penetrancia , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Secuenciación del Exoma , Pez Cebra/genética
7.
Hum Genomics ; 14(1): 28, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32907636

RESUMEN

BACKGROUND: Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs. METHODS: We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤ 1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines. RESULTS: Sixty-six patients with pre-biopsy MDC scores of 3-8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n = 3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC. CONCLUSIONS: We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant, was a founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Enfermedades Mitocondriales/genética , Mutación , Pueblo Asiatico/genética , Niño , China , Estudios de Cohortes , Femenino , GTP Fosfohidrolasas/genética , Predisposición Genética a la Enfermedad/etnología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Masculino , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/etnología , Proteínas Mitocondriales/genética , Oxigenasas de Función Mixta/genética , Proteínas Nucleares , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Transcripción
8.
NPJ Genom Med ; 5(1): 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963807

RESUMEN

Exome sequencing (ES) has become one of the important diagnostic tools in clinical genetics with a reported diagnostic rate of 25-58%. Many studies have illustrated the diagnostic and immediate clinical impact of ES. However, up to 75% of individuals remain undiagnosed and there is scarce evidence supporting clinical utility beyond a follow-up period of >1 year. This is a 3-year follow-up analysis to our previous publication by Mak et al. (NPJ Genom. Med. 3:19, 2018), to evaluate the long-term clinical utility of ES and the diagnostic potential of exome reanalysis. The diagnostic yield of the initial study was 41% (43/104). Exome reanalysis in 46 undiagnosed individuals has achieved 12 new diagnoses. The additional yield compared with the initial analysis was at least 12% (increased from 41% to at least 53%). After a median follow-up period of 3.4 years, change in clinical management was observed in 72.2% of the individuals (26/36), leading to positive change in clinical outcome in four individuals (11%). There was a minimum healthcare cost saving of HKD$152,078 (USD$19,497; €17,282) annually for these four individuals. There were a total of six pregnancies from five families within the period. Prenatal diagnosis was performed in four pregnancies; one fetus was affected and resulted in termination. None of the parents underwent preimplantation genetic diagnosis. This 3-year follow-up study demonstrated the long-term clinical utility of ES at individual, familial and health system level, and the promising diagnostic potential of subsequent reanalysis. This highlights the benefits of implementing ES and regular reanalysis in the clinical setting.

9.
Mol Genet Genomic Med ; 8(7): e1229, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32352246

RESUMEN

BACKGROUND: Autosomal recessive or compound heterozygous mutations in KLHL40 cause nemaline myopathy 8, which is one of the most severe forms of nemaline myopathy. The KLHL40 c.1516A>C variant has recently been reported as a founder mutation in southern Chinese. METHODS: We report six cases of nemaline myopathy 8 which involves the c.1516A>C variant, from five unrelated families of non-consanguineous southern Chinese. The pre- and postnatal phenotypes of these cases were reviewed with emphasis on prenatal clinical features. Genetic testing for the founder mutation was performed on three patients with homozygous mutations. RESULTS: Common prenatal features included reduced fetal movement, polyhydramnios, breech presentation, and clubfeet. Two pregnancies were terminated. Four live-born patients had postnatal features typical of nemaline myopathy 8. The length of survival ranged from 49 days to 17 months, with respiratory failure and infections being the principal causes of death. Haplotype analysis in three patients with homozygous mutation showed a shared haplotype block of 1.1727 cM spanning over the c.1516A>C variant, suggesting it is a southern Chinese-specific founder mutation. CONCLUSION: Analysis of the KLHL40 c.1516A>C variant should be considered in prenatal diagnosis of Chinese pregnant patients with suspected congenital neuromuscular disorders or with significant family history of congenital myopathies.


Asunto(s)
Efecto Fundador , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Feto Abortado/patología , Adulto , China , Femenino , Haplotipos , Homocigoto , Humanos , Recién Nacido , Miopatías Nemalínicas/patología , Fenotipo , Mutación Puntual
10.
Mol Genet Genomic Med ; 8(5): e1205, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32154989

RESUMEN

BACKGROUND: Neuromuscular disorders (NMDs) comprise a group of heterogeneous genetic diseases with a broad spectrum of overlapping the clinical presentations that makes diagnosis challenging. Notably, the recent introduction of whole-exome sequencing (WES) is introducing rapid changes on the genetic diagnosis of NMDs. We aimed to investigate the diagnostic value of WES for pediatric-onset NMDs. METHODS: We applied integrated diagnostic approach and performed WES in 50 Chinese subjects (30 males, 20 females) with undiagnosed pediatric-onset NMDs despite previous specific tests. The patients were categorized in four subgroups according to phenotyping and investigation findings. Variants on NMDs gene list and open exome analysis for those with initial negative findings were identified. RESULTS: WES identified causative variants in ACTA1 (n = 2), POMT1, COL6A1 (n = 2), MTMR2, LMNA, SELENON, DNM2, TGFB1, MPZ, IGHMBP2, and LAMA2 in 13 patients. Two subjects have variants of uncertain significance (VUSs) in TTN and SCN11A, unlikely to be pathogenic due to incompatible phenotypes. The mean interval time from symptom onset to genetic diagnosis was 10.4 years (range from 1 month to 33 years). The overall diagnostic yield of WES in our cohort was 26%. Open exome analysis was necessary to identify the pathogenic variant in TGFB1 that caused skeletal dysplasia with neuromuscular presentation. CONCLUSION: Our study shows a clear role of WES in the pathway of integrated diagnostic approach to shorten the diagnostic odyssey in patients with rare NMDs.


Asunto(s)
Secuenciación del Exoma/métodos , Pruebas Genéticas/métodos , Enfermedades Neuromusculares/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Sitios Genéticos , Pruebas Genéticas/normas , Humanos , Lactante , Masculino , Mutación , Enfermedades Neuromusculares/diagnóstico , Valor Predictivo de las Pruebas , Secuenciación del Exoma/normas
11.
Neuromuscul Disord ; 30(1): 47-53, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926838

RESUMEN

Megaconial congenital muscular dystrophy (CMD) is a rare form of congenital muscular dystrophy attributed to an autosomal recessive CHKB mutation. We report two unrelated Chinese girls with Megaconial CMD who harbored the same novel homozygous CHKB mutation but exhibited different phenotypes. Patient 1, who is now 8 years old, has autism, intellectual disabilities, mild girdle weakness, and characteristic muscle biopsy with COX-negative fibers. Patient 2, now 12 years old, has limited intelligence and marked weakness, with scoliosis, hip subluxation and early loss of ambulation. Both exhibited mildly elevated creatine kinase levels, have relative sparing of adductor longus and extensor digitorum longus on MRI leg muscles, and a c.598del (p.Gln200Argfs*11) homozygous CHKB loss-of-function mutation. Their parents are heterozygous carriers. This is the first report of Megaconial CMD in Chinese patients demonstrating the pathogenicity of the identified homozygous CHKB variant. A case review of all previously reported patients of different ethnicities is also included.


Asunto(s)
Colina Quinasa/genética , Distrofias Musculares/genética , Niño , China , Femenino , Humanos , Imagen por Resonancia Magnética , Distrofias Musculares/diagnóstico , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología
12.
Lancet Reg Health West Pac ; 1: 100001, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34327338

RESUMEN

BACKGROUND: Rapid whole-exome sequencing (rWES) offers the potential for early diagnosis-predicated precision medicine. Previous evidence focused predominantly on infants from the intensive care unit (ICU). This study sought to examine the diagnostic and clinical utility, and the economic impact on clinical management of rWES in patients beyond infancy and ICU setting. METHODS: rWES was performed on a prospective cohort of patients with suspected monogenic disorder referred from territory-wide paediatric ICUs and non-ICUs in Hong Kong urging for rapid genetic diagnosis. All eligible families were invited. We aimed to achieve a rapid turnaround time (TAT) of 14 days. Clinical utility and costs associated with clinical management were assessed in diagnosed cases. Actual quantitative changes in healthcare utilisation were compared with a counterfactual diagnostic trajectory and/or with matched historical control whenever possible. FINDINGS: rWES were offered to 102 families and 32/102 (31%) patients received a molecular diagnosis, with a median TAT of 11 days. Clinical management changed in 28 of 32 diagnosed patients (88%), including but not limited to modifications in treatment, avoidance of surgeries, and informing decisions on redirection of care. Cost analysis was performed in eight patients. rWES was estimated to reduce hospital length of stay by 566 days and decrease healthcare costs by HKD$8,044,250 (GBP£796,460) for these eight patients. The net cost-savings after inclusion of rWES costs were estimated to be HKD$5,325,187 (GBP£527,246). INTERPRETATION: This study replicates the diagnostic capacity and rapid TAT of rWES in predominantly Chinese patients, and demonstrates diagnosis-predicated precision medicine and net healthcare savings. Findings were corroborated by evidence from multinational cohorts, combined as part of a meta-analysis. rWES merits consideration as a first-tier diagnostic tool for patients with urgent needs in the clinical setting. FUNDING: Health and Medical Research Fund, HKU Seed Fund for Basic Research, The Society for the Relief of Disabled Children, and Edward and Yolanda Wong Fund.

13.
Front Genet ; 11: 620162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584815

RESUMEN

Balanced chromosomal abnormalities (BCAs) are changes in the localization or orientation of a chromosomal segment without visible gain or loss of genetic material. BCAs occur at a frequency of 1 in 500 newborns and are associated with an increased risk of multiple congenital anomalies and/or neurodevelopmental disorders, especially if it is a de novo mutation. In this pilot project, we used short read genome sequencing (GS) to retrospectively re-sequence ten prenatal subjects with de novo BCAs and compared the performance of GS with the original karyotyping. GS characterized all BCAs found by conventional karyotyping with the added benefit of precise sub-band delineation. By identifying BCA breakpoints at the nucleotide level using GS, we found disruption of OMIM genes in three cases and identified cryptic gain/loss at the breakpoints in two cases. Of these five cases, four cases reached a definitive genetic diagnosis while the other one case had a BCA interpreted as unknown clinical significance. The additional information gained from GS can change the interpretation of the BCAs and has the potential to improve the genetic counseling and perinatal management by providing a more specific genetic diagnosis. This demonstrates the added clinical utility of using GS for the diagnosis of BCAs.

14.
Brain ; 143(1): 55-68, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834374

RESUMEN

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Malformaciones del Sistema Nervioso/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/diagnóstico por imagen , Adolescente , Arteria Basilar/anomalías , Arteria Basilar/diagnóstico por imagen , Arterias Carótidas/anomalías , Arterias Carótidas/diagnóstico por imagen , Vermis Cerebeloso/anomalías , Vermis Cerebeloso/diagnóstico por imagen , Cerebelo/anomalías , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa , Anomalías Craneofaciales/diagnóstico por imagen , Femenino , Fibroblastos/metabolismo , Humanos , Imagenología Tridimensional , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Degradación de ARNm Mediada por Codón sin Sentido , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome , Tomografía Computarizada por Rayos X , Secuenciación del Exoma , Secuenciación Completa del Genoma
15.
NPJ Genom Med ; 4: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396399

RESUMEN

Primary coenzyme Q10 deficiency-7 (COQ10D7) is a rare mitochondrial disease caused by biallelic mutations in COQ4. Here we report the largest cohort of COQ10D7 to date, with 11 southern Chinese patients confirmed with biallelic COQ4 mutations. Five of them have the classical neonatal-onset encephalo-cardiomyopathy, while the others have infantile onset with more heterogeneous clinical presentations. We also identify a founder mutation COQ4 (NM_016035.5): c.370G>A, p.(Gly124Ser) for COQ10D7, suggesting a higher chance of occurrence in the southern Chinese. This study helps improve understanding of the clinical spectrum of this disorder.

16.
Epilepsia Open ; 4(1): 63-72, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30868116

RESUMEN

OBJECTIVE: Early onset drug-resistant epilepsy is a neurologic disorder in which 2 antiepileptic drugs fail to maintain the seizure-free status of the patient. Heterogeneous clinical presentations make the diagnosis challenging. We aim to identify the underlying genetic causes of a pediatric cohort with drug-resistant epilepsy and evaluate whether the findings can provide information on patient management. METHODS: We include patients with drug-resistant epilepsy onset before 18 years of age. Singleton clinical chromosomal microarray (CMA) followed by whole exome sequencing (WES) was performed using genomic DNA. In the first-tier analysis of the exome data, we aimed to identify disease-causing mutations in 546 genes known to cause, or to be associated with, epilepsy. For negative cases, we proceeded to exome-wide analysis. Rare coding variants were interrogated for pathogenicity based on the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: We recruited 50 patients. We identified 6 pathogenic or likely pathogenic mutations, giving a diagnostic yield of 12%. Mutations were found in 6 different genes: SCN8A, SCN1A, MECP2, CDKL5, DEPDC5, and CHD2. The CDKL5 variant was found to be mosaic. One variant of unknown significance (VUS) in KCNT1 was found in a patient with compatible clinical features. Of note, a reported pathogenic SCN5A mutation known to contribute to Brugada syndrome, was also found in the patient with an SCN1A mutation. SIGNIFICANCE: Our study suggests that singleton WES is an effective diagnostic tool for drug-resistant epilepsy. Genetic diagnosis can help to consolidate the clinical diagnosis, to facilitate phenotypic expansion, and to influence treatment and management options for seizure control in our patients. In our study, a significant portion of the genetic findings are known to be associated with an increased risk of sudden unexpected death in epilepsy (SUDEP). These findings could assist with more appropriate management in patients with epilepsy.

17.
Parkinsonism Relat Disord ; 63: 42-45, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30670339

RESUMEN

Spinocerebellar ataxia 35 (SCA35) has been associated with pathogenic mutations in the gene TGM6. In a Chinese exome sequencing cohort, we identified 8 families with reported TGM6 variants sharing no features of SCA35. Considering this finding, we reviewed the public database gnomAD and found these variants to be significantly more common in the East Asians than in other ethnic groups (P < 0.0001). Gene constraint metrics showed that both missense and loss-of-function variants in TGM6 are likely to be tolerated and there is no regional constraint. By performing inflation analysis, it demonstrated that the cumulative frequency of TGM6 reported pathogenic variants is at least 111-fold inflated over disease prevalence of all autosomal dominant SCAs, indicating a high chance of misdiagnosis or low penetrance. Misclassification of benign or low penetrant variants as pathogenic is a significant problem that often results in genetic misdiagnosis. This highlights the necessity of evaluating variant pathogenicity with sequencing of genomes from diverse populations, both from asymptomatic controls and phenotypically different patients, in order to ensure accurate classification of variants.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Ataxias Espinocerebelosas/genética , Transglutaminasas/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Linaje , Adulto Joven
18.
BMC Med Genomics ; 11(1): 93, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30359267

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) has become an invaluable tool for genetic diagnosis in paediatrics. However, it has not been widely adopted in the prenatal setting. This study evaluated the use of WES in prenatal genetic diagnosis in fetuses with structural congenital anomalies (SCAs) detected on prenatal ultrasound. METHOD: Thirty-three families with fetal SCAs on prenatal ultrasonography and normal chromosomal microarray results were recruited. Genomic DNA was extracted from various fetal samples including amniotic fluid, chorionic villi, and placental tissue. Parental DNA was extracted from peripheral blood when available. We used WES to sequence the coding regions of parental-fetal trios and to identify the causal variants based on the ultrasonographic features of the fetus. RESULTS: Pathogenic mutations were identified in three families (n = 3/33, 9.1%), including mutations in DNAH11, RAF1 and CHD7, which were associated with primary ciliary dyskinesia, Noonan syndrome, and CHARGE syndrome, respectively. In addition, variants of unknown significance (VUSs) were detected in six families (18.2%), in which genetic changes only partly explained prenatal features. CONCLUSION: WES identified pathogenic mutations in 9.1% of fetuses with SCAs and normal chromosomal microarray results. Databases for fetal genotype-phenotype correlations and standardized guidelines for variant interpretation in prenatal diagnosis need to be established to facilitate the use of WES for routine testing in prenatal diagnosis.


Asunto(s)
Síndrome CHARGE/genética , Trastornos de la Motilidad Ciliar/genética , Secuenciación del Exoma , Síndrome de Noonan/genética , Líquido Amniótico/metabolismo , Dineínas Axonemales/genética , Síndrome CHARGE/diagnóstico , Trastornos de la Motilidad Ciliar/diagnóstico , ADN/aislamiento & purificación , ADN/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Femenino , Feto/metabolismo , Humanos , Síndrome de Noonan/diagnóstico , Fenotipo , Placenta/metabolismo , Embarazo , Diagnóstico Prenatal , Proteínas Proto-Oncogénicas c-raf/genética , Ultrasonografía Prenatal
19.
Sci Rep ; 8(1): 2421, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402968

RESUMEN

RASopathies are a group of heterogeneous conditions caused by germline mutations in RAS/MAPK signalling pathway genes. With next-generation sequencing (NGS), sequencing capacity is no longer a limitation to molecular diagnosis. Instead, the rising number of variants of unknown significance (VUSs) poses challenges to clinical interpretation and genetic counselling. We investigated the potential of an integrated pipeline combining NGS and the functional assessment of variants for the diagnosis of RASopathies. We included 63 Chinese patients with RASopathies that had previously tested negative for PTPN11 and HRAS mutations. In these patients, we performed a genetic analysis of genes associated with RASopathies using a multigene NGS panel and Sanger sequencing. For the VUSs, we evaluated evidence from genetic, bioinformatic and functional data. Twenty disease-causing mutations were identified in the 63 patients, providing a primary diagnostic yield of 31.7%. Four VUSs were identified in five patients. The functional assessment supported the pathogenicity of the RAF1 and RIT1 VUSs, while the significance of two VUSs in A2ML1 remained unclear. In summary, functional analysis improved the diagnostic yield from 31.7% to 36.5%. Although technically demanding and time-consuming, a functional genetic diagnostic analysis can ease the clinical translation of these findings to aid bedside interpretation.


Asunto(s)
Síndrome de Costello/genética , Displasia Ectodérmica/genética , Insuficiencia de Crecimiento/genética , Cardiopatías Congénitas/genética , Neurofibromatosis 1/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas ras/genética , Adolescente , Animales , Bioensayo , Niño , Preescolar , Biología Computacional , Síndrome de Costello/patología , Displasia Ectodérmica/patología , Facies , Insuficiencia de Crecimiento/patología , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Cardiopatías Congénitas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , MAP Quinasa Quinasa 1/genética , Masculino , Mutación Missense , Neurofibromatosis 1/patología , Síndrome de Noonan/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína SOS1/genética , Pez Cebra , alfa-Macroglobulinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...