Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.360
Filtrar
1.
Phytomedicine ; 129: 155706, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38723528

RESUMEN

BACKGROUND: The pathogenesis of lower respiratory tract infections (LRTIs) has been demonstrated to be strongly associated with dysbiosis of respiratory microbiota. Scutellaria baicalensis, a traditional Chinese medicine, is widely used to treat respiratory infections. However, whether the therapeutic effect of S. baicalensis on LRTIs depends upon respiratory microbiota regulation is largely unclear. PURPOSE: To investigate the potential effect and mechanism of S. baicalensis on the respiratory microbiota of LRTI mice. METHODS: A mouse model of LRTI was established using Klebsiella pneumoniae or Streptococcus pneumoniae. Antibiotic treatment was administered, and transplantation of respiratory microbiota was performed to deplete the respiratory microbiota of mice and recover the destroyed microbial community, respectively. High-performance liquid chromatography (HPLC) was used to determine and quantify the chemical components of S. baicalensis water decoction (SBWD). Pathological changes in lung tissues and the expressions of serum inflammatory cytokines, including interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were determined by hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA), respectively. Quantitative real-time PCR (qRT-PCR) analysis was performed to detect the mRNA expression of GM-CSF. Metagenomic sequencing was performed to evaluate the effect of SBWD on the composition and function of the respiratory microbiota in LRTI mice. RESULTS: Seven main components, including scutellarin, baicalin, oroxylin A-7-O-ß-d-glucuronide, wogonoside, baicalein, wogonin, and oroxylin A, were identified and their levels in SBWD were quantified. SBWD ameliorated pulmonary pathological injury and inflammatory responses in K. pneumoniae and S. pneumoniae-induced LRTI mice, as evidenced by the dose-dependent reductions in the levels of serum inflammatory cytokines, IL-6 and TNF-α. SBWD may exert a bidirectional regulatory effect on the host innate immune responses in LRTI mice and regulate the expressions of IL-17A and GM-CSF in a microbiota-dependent manner. K. pneumoniae infection but not S. pneumoniae infection led to dysbiosis in the respiratory microbiota, evident through disturbances in the taxonomic composition characterized by bacterial enrichment, including Proteobacteria, Enterobacteriaceae, and Klebsiella. K. pneumoniae and S. pneumoniae infection altered the bacterial functional profile of the respiratory microbiota, as indicated by increases in lipopolysaccharide biosynthesis, metabolic pathways, and carbohydrate metabolism. SBWD had a certain trend on the regulation of compositional disorders in the respiratory flora and modulated partial microbial functions embracing carbohydrate metabolism in K. pneumoniae-induced LRTI mice. CONCLUSION: SBWD may exert an anti-infection effect on LRTI by targeting IL-17A and GM-CSF through respiratory microbiota regulation. The mechanism of S. baicalensis action on respiratory microbiota in LRTI treatment merits further investigation.

2.
Transl Cancer Res ; 13(4): 1924-1935, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737695

RESUMEN

Background: Papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) contribute to more than 95% of thyroid malignancies. However, synchronous PTC and FTC are less common; it is most commonly discovered incidentally as synchronous malignancies during operation, which adds difficulties to intraoperative decision-making and postoperative treatment. Therefore, we analyzed the clinicopathological characteristics and prognosis of patients with PTC and FTC in our center. Methods: We conducted a search of single PTC, single FTC, and synchronous PTC/FTC patients who received initial surgery treatment at Fudan University Shanghai Cancer Center from 2006 to 2018 and collected paraffin-embedded samples of synchronous patients. Clinicopathological characteristics were collected from the electronic medical record system. Follow-up was performed through telephone contact or medical records. Exome sequencing was performed by ThyroLead panel. Results: Total of 42 synchronous PTC/FTC patients, 244 single FTC patients, and 2,959 single PTC patients were included. It showed a similarity between the clinicopathological features of synchronous thyroid cancer patients and single PTC patients, with a greater proportion of females, higher probabilities of lymph node metastasis, and higher rate of concurrence of Hashimoto's disease. The disease-free survival (DFS) curve indicated a worse prognosis of the synchronous group and single PTC group compared to the single FTC group, who had a propensity for neck lymph node recurrence; however, logistic multivariate regression analysis did not find any factor related to recurrence in the synchronous group. After re-checking pathology, DNA extraction, and quality control, genetic alteration information of 62 samples including primary tumors and metastatic lymph nodes from 35 synchronous cancer patients was displayed. In total, 81 mutations and 1 fusion gene were identified, including mutations related to outcomes and targeted therapy. Besides, some rare mutations in thyroid cancer were found in these patients. Conclusions: To conclude, synchronous PTC/FTC tend to be incidentally discovered during or after operation, behaving more like single PTC. The prognosis of synchronous patients is worse than that of single FTC patients and supplemental cervical lymph node dissection, total thyroidectomy, and postoperative radioiodine therapy should be taken into consideration after diagnosis. The next-generation sequencing (NGS) showed a unique molecular feature of synchronous patients with some rare mutations.

3.
Angew Chem Int Ed Engl ; : e202407898, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739536

RESUMEN

The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28% higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33% after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials.

4.
Endocrine ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730069

RESUMEN

In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including ß-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional ß-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional ß-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional ß-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional ß-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional ß-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.

5.
Hepatol Int ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740699

RESUMEN

BACKGROUND: Evidence concerning long-term outcome of robotic liver resection (RLR) and laparoscopic liver resection (LLR) for hepatocellular carcinoma (HCC) patients is scarce. METHODS: This study enrolled all patients who underwent RLR and LLR for resectable HCC between July 2016 and July 2021. Propensity score matching (PSM) was employed to create a 1:3 match between the RLR and LLR groups. A comprehensive collection and analysis of patient data regarding efficacy and safety have been conducted, along with the evaluation of the learning curve for RLR. RESULTS: Following PSM, a total of 341 patients were included, with 97 in the RLR group and 244 in the LLR group. RLR group demonstrated a significantly longer operative time (median [IQR], 210 [152.0-298.0] min vs. 183.5 [132.3-263.5] min; p = 0.04), with no significant differences in other perioperative and short-term postoperative outcomes. Overall survival (OS) was similar between the two groups (p = 0.43), but RLR group exhibited improved recurrence-free survival (RFS) (median of 65 months vs. 56 months, p = 0.006). The estimated 5-year OS for RLR and LLR were 74.8% (95% CI: 65.4-85.6%) and 80.7% (95% CI: 74.0-88.1%), respectively. The estimated 5-year RFS for RLR and LLR were 58.6% (95% CI: 48.6-70.6%) and 38.3% (95% CI: 26.4-55.9%), respectively. In the multivariate Cox regression analysis, RLR (HR: 0.586, 95% CI (0.393-0.874), p = 0.008) emerged as an independent predictor of reducing recurrence rates and enhanced RFS. The operative learning curve indicates that approximately after the 11th case, the learning curve of RLR stabilized and entered a proficient phase. CONCLUSIONS: OS was comparable between RLR and LLR, and while RFS was improved in the RLR group. RLR demonstrates oncological effectiveness and safety for resectable HCC.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692102

RESUMEN

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Óxidos de Nitrógeno , Cumarinas/química , Humanos , Colorantes Fluorescentes/química , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Espectrometría de Fluorescencia , Células HeLa
7.
BMC Med Genomics ; 17(1): 133, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760670

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS: Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS: There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION: We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.


Asunto(s)
Biomarcadores , Biología Computacional , Progresión de la Enfermedad , Redes Reguladoras de Genes , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Humanos , Biología Computacional/métodos , Biomarcadores/metabolismo , MicroARNs/genética , Mapas de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , ARN Circular/genética
8.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38772085

RESUMEN

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.

9.
J Neurochem ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690718

RESUMEN

Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.

10.
Int J Nanomedicine ; 19: 4299-4317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766654

RESUMEN

Background: Inhibition of amyloid ß protein fragment (Aß) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods: The interaction between EGCG and Aß42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aß42 aggregation. Results: EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aß42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aß42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion: Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides , Catequina , Oro , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos , , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Catequina/química , Catequina/farmacología , Catequina/análogos & derivados , Té/química , Nanopartículas del Metal/química , Nanopartículas del Metal/administración & dosificación , Oro/química , Ligandos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/antagonistas & inhibidores , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Agregado de Proteínas/efectos de los fármacos
11.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38712041

RESUMEN

Spinal cord injuries (SCI) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability. Demyelination is a reversible phenomenon, and drugs like 4-aminopyridine (4AP), which target K+ channels in demyelinated axons, show that conduction can be restored. Yet, accurately assessing and monitoring demyelination post-SCI remains challenging due to the lack of suitable imaging methods. In this study, we introduce a novel approach utilizing the positron emission tomography (PET) tracer, [ 18 F]3F4AP, specifically targeting K+ channels in demyelinated axons for SCI imaging. Rats with incomplete contusion injuries were imaged up to one month post-injury, revealing [ 18 F]3F4AP's exceptional sensitivity to injury and its ability to detect temporal changes. Further validation through autoradiography and immunohistochemistry confirmed [ 18 F]3F4AP's targeting of demyelinated axons. In a proof-of-concept study involving human subjects, [ 18 F]3F4AP differentiated between a severe and a largely recovered incomplete injury, indicating axonal loss and demyelination, respectively. Moreover, alterations in tracer delivery were evident on dynamic PET images, suggestive of differences in spinal cord blood flow between the injuries. In conclusion, [ 18 F]3F4AP demonstrates efficacy in detecting incomplete SCI in both animal models and humans. The potential for monitoring post-SCI demyelination changes and response to therapy underscores the utility of [ 18 F]3F4AP in advancing our understanding and management of spinal cord injuries.

12.
ChemSusChem ; : e202400515, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705848

RESUMEN

The construction of nanostructured heterostructure is a potent strategy for achieving high-performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4-based heterostructure stands out as a promising method for optimizing light-harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV-Vis spectroscopy, X-ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built-in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm-2), enhanced charge separation efficiency (85%), and higher open-circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers' migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built-in electric field is beneficial for boosting charge migration.

13.
Front Digit Health ; 6: 1334058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711677

RESUMEN

A growing body of research has focused on the utility of adaptive intervention models for promoting long-term weight loss maintenance; however, evaluation of these interventions often requires customized smartphone applications. Building such an app from scratch can be resource-intensive. To support a novel clinical trial of an adaptive intervention for weight loss maintenance, we developed a companion app, MyTrack+, to pair with a main commercial app, FatSecret (FS), leveraging a user-centered design process for rapid prototyping and reducing software engineering efforts. MyTrack+ seamlessly integrates data from FS and the BodyTrace smart scale, enabling participants to log and self-monitor their health data, while also incorporating customized questionnaires and timestamps to enhance data collection for the trial. We iteratively refined the app by first developing initial mockups and incorporating feedback from a usability study with 17 university students. We further improved the app based on an in-the-wild pilot study with 33 participants in the target population, emphasizing acceptance, simplicity, customization options, and dual app usage. Our work highlights the potential of using an iterative human-centered design process to build a companion app that complements a commercial app for rapid prototyping, reducing costs, and enabling efficient research progress.

14.
Surgery ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762380

RESUMEN

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.

15.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712735

RESUMEN

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Asunto(s)
Transportador de Cobre 1 , Metilación de ADN , Progresión de la Enfermedad , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regiones Promotoras Genéticas , Mutación , Persona de Mediana Edad , Pronóstico , Anciano , Regulación hacia Arriba
16.
World J Clin Cases ; 12(9): 1597-1605, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38576734

RESUMEN

BACKGROUND: Acute non-variceal upper gastrointestinal bleeding (ANVUGIB) constitutes a prevalent emergency within Gastroenterology, encompassing 80%-90% of all gastrointestinal hemorrhage incidents. This condition is distinguished by its abrupt onset, swift progression, and notably elevated mortality rate. AIM: To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis. METHODS: We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023, utilizing our medical record system. Data pertaining to general patient information, etiological factors, disease outcomes, and other relevant variables were meticulously collected and analyzed. RESULTS: Among the 532 patients diagnosed with ANVUGIB, the male-to-female ratio was 2.91:1, with a higher prevalence among males. Notably, 43.6% of patients presented with black stool as their primary complaint, while 27.4% had hematemesis as their initial symptom. Upon admission, 17% of patients exhibited both hematemesis and black stool, while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding. Urgent routine blood examinations at admission revealed that 75.8% of patients had anemia, with 63.4% experiencing moderate to severe anemia, and 1.5% having extremely severe anemia (hemoglobin < 30 g/L). With regard to etiology, 53.2% of patients experienced bleeding without a definitive trigger, 24.2% had a history of using gastric mucosa-irritating medications, 24.2% developed bleeding after alcohol consumption, 2.8% attributed it to improper diet, 1.7% to emotional excitement, and 2.3% to fatigue preceding the bleeding episode. Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals, while bleeding due to alcohol consumption showed the opposite trend. Additionally, diet-related bleeding was more common among the young age group compared to the middle-aged group. Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB (73.3%), followed by gastrointestinal malignancies (10.9%), acute gastric mucous lesions (9.8%), and androgenic upper gastrointestinal bleeding (1.5%) among inpatients with ANVUGIB. Of the 532 patients with gastrointestinal bleeding, 68 underwent endoscopic hemostasis, resulting in an endoscopic treatment rate of 12.8%, with a high immediate hemostasis success rate of 94.1%. CONCLUSION: ANVUGIB patients exhibit diverse characteristics across different age groups, and endoscopic hemostatic treatments have demonstrated remarkable efficacy.

17.
World J Gastrointest Oncol ; 16(3): 907-918, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577444

RESUMEN

BACKGROUND: Duodenal neuroendocrine tumours (DNETs) are rare neoplasms. However, the incidence of DNETs has been increasing in recent years, especially as an incidental finding during endoscopic studies. Regrettably, there is no consensus regarding the ideal treatment of DNETs. Even there are few studies on the clinical features and survival analysis of DNETs. AIM: To analyze the clinical characteristics and prognostic factors of patients with duodenal neuroendocrine tumours. METHODS: The clinical data of DNETs diagnosed in the First Affiliated Hospital of Air Force Military Medical University from June 2011 to July 2022 were collected. Neuroendocrine tumours located in the ampulla area of the duodenum were divided into the ampullary region group; neuroendocrine tumours in any part of the duodenum outside the ampullary area were divided into the nonampullary region group. Using a retrospective study, the clinical characteristics of the two groups and risk factors affecting the survival of DNET patients were analysed. RESULTS: Twenty-nine DNET patients were screened. The male to female ratio was 1:1.9, and females comprised the majority. The ampullary region group accounted for 24.1% (7/29), while the nonampullary region group accounted for 75.9% (22/29). When diagnosed, the clinical symptoms of the ampullary region group were mainly abdominal pain (85.7%), while those of the nonampullary region groups were mainly abdominal distension (59.1%). There were differences in the composition of staging of tumours between the two groups (Fisher's exact probability method, P = 0.001), with nonampullary stage II tumours (68.2%) being the main stage (P < 0.05). After the diagnosis of DNETs, the survival rate of the ampullary region group was 14.3% (1/7), which was lower than that of 72.7% (16/22) in the nonampullary region group (Fisher's exact probability method, P = 0.011). The survival time of the ampullary region group was shorter than that of the nonampullary region group (P < 0.000). The median survival time of the ampullary region group was 10.0 months and that of the nonampullary region group was 451.0 months. Multivariate analysis showed that tumours in the ampulla region and no surgical treatment after diagnosis were independent risk factors for the survival of DNET patients (HR = 0.029, 95%CI 0.004-0.199, P < 0.000; HR = 12.609, 95%CI: 2.889-55.037, P = 0.001). Further analysis of nonampullary DNET patients showed that the survival time of patients with a tumour diameter < 2 cm was longer than that of patients with a tumour diameter ≥ 2 cm (t = 7.243, P = 0.048). As of follow-up, 6 patients who died of nonampullary DNETs had a tumour diameter that was ≥ 2 cm, and 3 patients in stage IV had liver metastasis. Patients with a tumour diameter < 2 cm underwent surgical treatment, and all survived after surgery. CONCLUSION: Surgical treatment is a protective factor for prolonging the survival of DNET patients. Compared to DNETs in the ampullary region, patients in the nonampullary region group had a longer survival period. The liver is the organ most susceptible to distant metastasis of nonampullary DNETs.

18.
Hum Cell ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607518

RESUMEN

Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague-Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1ß, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1ß, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.

19.
Adv Sci (Weinh) ; : e2309559, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639394

RESUMEN

Idiopathic short stature (ISS) is a common childhood condition with largely unknown underlying causes. Recent research highlights the role of circulating exosomes in the pathogenesis of various disorders, but their connection to ISS remains unexplored. In the experiments, human chondrocytes are cocultured with plasma exosomes from ISS patients, leading to impaired chondrocyte growth and bone formation. Elevated levels of a specific long non-coding RNA (lncRNA), ISSRL, are identified as a distinguishing factor in ISS, boasting high specificity and sensitivity. Silencing ISSRL in ISS plasma exosomes reverses the inhibition of chondrocyte proliferation and bone formation. Conversely, overexpression of ISSRL in chondrocytes impedes their growth and bone formation, revealing its mechanism of action through the miR-877-3p/GZMB axis. Subsequently, exosomes (CT-Exo-siISSRL-oeGH) with precise cartilage-targeting abilities are engineered, loaded with customized siRNA for ISSRL and growth hormone. This innovative approach offers a therapeutic strategy to address ISS by rectifying abnormal non-coding RNA expression in growth plate cartilage and delivering growth hormone with precision to promote bone growth. This research provides valuable insights into ISS diagnosis and treatment, highlighting the potential of engineered exosomes.

20.
Asian J Surg ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641539

RESUMEN

OBJECTIVE: This article is a Meta-analysis aiming to systematically evaluate the difference in efficacy of immune checkpoint inhibitor in patients with non-small cell lung cancer (NSCLC) by age. METHODS: We performed a Meta-analysis of published randomized controlled trials concerning for patients with NSCLC by age. We compared overall survival among three groups (age <65 years, age 65-75 years, age ≥75 years). Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected and pooled. RESULTS: A total of 10,291 patients from 17 RCTs were included. In the group under age 65 years, immune checkpoint inhibitor can significantly prolong the overall survival of patients with NSCLC (HR = 0.73, 95% CI: 0.66∼0.81, P < 0.00001). In the age 65-75 years group, immune checkpoint inhibitors prolonged overall survival in patients with NSCLC (HR = 0.78, 95% CI:0.71∼0.84, P < 0.00001). However, it has no significant effect on the overall survival of NSCLC patients (HR = 0.88, 95% CI:0.72∼1.08, P > 0.05) in the group older than 75 years. CONCLUSIONS: Immune checkpoint inhibitors prolonged the overall survival of NSCLC patients in the age <65 years group and the age 65-75 years group, but in the age ≥75 years group, there was no significant effect on overall survival. This may be related to innate immune and adaptive immune dysregulation due to "immunosenescence" in older patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...