Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Transl Cancer Res ; 13(4): 1924-1935, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737695

RESUMEN

Background: Papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) contribute to more than 95% of thyroid malignancies. However, synchronous PTC and FTC are less common; it is most commonly discovered incidentally as synchronous malignancies during operation, which adds difficulties to intraoperative decision-making and postoperative treatment. Therefore, we analyzed the clinicopathological characteristics and prognosis of patients with PTC and FTC in our center. Methods: We conducted a search of single PTC, single FTC, and synchronous PTC/FTC patients who received initial surgery treatment at Fudan University Shanghai Cancer Center from 2006 to 2018 and collected paraffin-embedded samples of synchronous patients. Clinicopathological characteristics were collected from the electronic medical record system. Follow-up was performed through telephone contact or medical records. Exome sequencing was performed by ThyroLead panel. Results: Total of 42 synchronous PTC/FTC patients, 244 single FTC patients, and 2,959 single PTC patients were included. It showed a similarity between the clinicopathological features of synchronous thyroid cancer patients and single PTC patients, with a greater proportion of females, higher probabilities of lymph node metastasis, and higher rate of concurrence of Hashimoto's disease. The disease-free survival (DFS) curve indicated a worse prognosis of the synchronous group and single PTC group compared to the single FTC group, who had a propensity for neck lymph node recurrence; however, logistic multivariate regression analysis did not find any factor related to recurrence in the synchronous group. After re-checking pathology, DNA extraction, and quality control, genetic alteration information of 62 samples including primary tumors and metastatic lymph nodes from 35 synchronous cancer patients was displayed. In total, 81 mutations and 1 fusion gene were identified, including mutations related to outcomes and targeted therapy. Besides, some rare mutations in thyroid cancer were found in these patients. Conclusions: To conclude, synchronous PTC/FTC tend to be incidentally discovered during or after operation, behaving more like single PTC. The prognosis of synchronous patients is worse than that of single FTC patients and supplemental cervical lymph node dissection, total thyroidectomy, and postoperative radioiodine therapy should be taken into consideration after diagnosis. The next-generation sequencing (NGS) showed a unique molecular feature of synchronous patients with some rare mutations.

2.
World J Gastrointest Oncol ; 16(4): 1281-1295, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660643

RESUMEN

BACKGROUND: Gastric cancer (GC) is the fifth most common and the fourth most lethal malignant tumour in the world. Most patients are already in the advanced stage when they are diagnosed, which also leads to poor overall survival. The effect of postoperative adjuvant chemotherapy for advanced GC is unsatisfactory with a high rate of distant metastasis and local recurrence. AIM: To investigate the safety and efficacy of a programmed cell death 1 (PD-1) inhibitor combined with oxaliplatin and S-1 (SOX) in the treatment of Borrmann large type III and IV GCs. METHODS: A retrospective analysis (IRB-2022-371) was performed on 89 patients with Borrmann large type III and IV GCs who received neoadjuvant therapy (NAT) from January 2020 to December 2021. According to the different neoadjuvant treatment regimens, the patients were divided into the SOX group (61 patients) and the PD-1 + SOX (P-SOX) group (28 patients). RESULTS: The pathological response (tumor regression grade 0/1) in the P-SOX group was significantly higher than that in the SOX group (42.86% vs 18.03%, P = 0.013). The incidence of ypN0 in the P-SOX group was higher than that in the SOX group (39.29% vs 19.67%, P = 0.05). The use of PD-1 inhibitors was an independent factor affecting tumor regression grade. Meanwhile, the use of PD-1 did not increase postoperative complications or the adverse effects of NAT. CONCLUSION: A PD-1 inhibitor combined with SOX could significantly improve the rate of tumour regression during NAT for patients with Borrmann large type III and IV GCs.

3.
Biomed Environ Sci ; 37(2): 178-186, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582980

RESUMEN

Objective: This study aimed to compare the current Essen rabies post-exposure immunization schedule (0-3-7-14-28) in China and the simple 4-dose schedule (0-3-7-14) newly recommended by the World Health Organization in terms of their safety, efficacy, and protection. Methods: Mice were vaccinated according to different immunization schedules, and blood was collected for detection of rabies virus neutralizing antibodies (RVNAs) on days 14, 21, 28, 35, and 120 after the first immunization. Additionally, different groups of mice were injected with lethal doses of the CVS-11 virus on day 0, subjected to different rabies immunization schedules, and assessed for morbidity and death status. In a clinical trial, 185 rabies-exposed individuals were selected for post-exposure vaccination according to the Essen schedule, and blood was collected for RVNAs detection on days 28 and 42 after the first immunization. Results: A statistically significant difference in RVNAs between mice in the Essen and 0-3-7-14 schedule groups was observed on the 35th day ( P < 0.05). The groups 0-3-7-14, 0-3-7-21, and 0-3-7-28 showed no statistically significant difference ( P > 0.05) in RVNAs levels at any time point. The post-exposure immune protective test showed that the survival rate of mice in the control group was 20%, whereas that in the immunization groups was 40%. In the clinical trial, the RVNAs positive conversion rates on days 28 (14 days after 4 doses) and 42 (14 days after 5 doses) were both 100%, and no significant difference in RVNAs levels was observed ( P > 0.05). Conclusion: The simple 4-dose schedule can produce sufficient RVNAs levels, with no significant effect of a delayed fourth vaccine dose (14-28 d) on the immunization potential.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Ratones , Rabia/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación , China , Profilaxis Posexposición
4.
JCI Insight ; 9(8)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38478516

RESUMEN

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Asunto(s)
Quimiocina CXCL13 , Inmunoterapia , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Carcinoma Anaplásico de Tiroides/patología , Carcinoma Anaplásico de Tiroides/terapia , Carcinoma Anaplásico de Tiroides/inmunología , Animales , Ratones , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/terapia , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/genética , Inmunoterapia/métodos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Análisis de la Célula Individual , Pronóstico , Linfocitos T/inmunología , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino
5.
J Am Chem Soc ; 146(5): 2928-2932, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38289153

RESUMEN

The asymmetric total synthesis of pedrolide (>200 mg) with an unprecedented [5-5-5-6-6-3] hexacyclic core (pedrolane) was achieved. Its unique bicyclo[2.2.1]heptane ring system was efficiently constructed via an enantioselective ene reaction of cyclopentadiene followed by a Wittig reaction, isomerization, and a diastereoselective intramolecular Diels-Alder reaction cascade. The highly oxygenated carane [6-3] ring system was synthesized via a ring-closing metathesis reaction followed by an unusual free carbene cyclopropanation. Furthermore, the 12 contiguous stereocenters of pedrolide were installed diastereoselectively.

6.
Small ; 20(16): e2306914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041488

RESUMEN

Electrocatalysts with high activity and durability for acidic oxygen evolution reaction (OER) play a crucial role in achieving cost-effective hydrogen production via proton exchange membrane water electrolysis. A novel electrocatalyst, Te-doped RuO2 (Te-RuO2) nanotubes, synthesized using a template-directed process, which significantly enhances the OER performance in acidic media is reported. The Te-RuO2 nanotubes exhibit remarkable OER activity in acidic media, requiring an overpotential of only 171 mV to achieve an anodic current density of 10 mA cm-2. Furthermore, they maintain stable chronopotentiometric performance under 10 mA cm-2 in acidic media for up to 50 h. Based on the experimental results and density functional calculations, this significant improvement in OER performance to the synergistic effect of large specific surface area and modulated electronic structure resulting from the doping of Te cations is attributed.

7.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085783

RESUMEN

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

8.
Sci Adv ; 9(48): eadi7375, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019913

RESUMEN

Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.


Asunto(s)
Eritropoyesis , Síndromes Mielodisplásicos , Animales , Humanos , Ratones , Eritropoyesis/genética , Síndromes Mielodisplásicos/genética , Proteínas del Tejido Nervioso/genética , Pronóstico , Receptores Inmunológicos/genética , Proteínas Roundabout
9.
Microb Pathog ; 185: 106425, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923181

RESUMEN

Rabies, caused by the rabies virus (RABV), is the most fatal zoonotic disease. It is a neglected tropical disease which remains a major public health problem, causing approximately 59,000 deaths worldwide annually. Despite the existence of effective vaccines, the high incidence of human rabies is mainly linked to tedious vaccine immunisation procedures and the overall high cost of post-exposure prophylaxis. Therefore, it is necessary to develop an effective vaccine that has a simple procedure and is affordable to prevent rabies infection in humans. RABV belongs to the genus Lyssavirus and family Rhabdoviridae. Previous phylogenetic analyses have identified seven major clades of RABV in China (China I-VII), confirmed by analysing nucleotide sequences from both the G and N proteins. This study evaluated the immunogenicity and protective capacity of SYS6008, an mRNA rabies vaccine expressing rabies virus glycoprotein, in mice and cynomolgus macaques. We demonstrated that SYS6008 induced sufficient levels of rabies neutralising antibody (RVNA) in mice. In addition, SYS6008 elicited strong and durable RVNA responses in vaccinated cynomolgus macaques. In the pre-exposure prophylaxis murine model, one or two injections of SYS6008 at 1/10 or 1/30 of dosage provided protection against a challenge with a 30-fold LD50 of rabies virus (China I and II clades). We also demonstrated that in the post-exposure prophylaxis murine model, which was exposed to lethal rabies virus (China I-VII clades) before vaccination, one or two injections of SYS6008 at both 1/10 and 1/30 dosages provided better protection against rabies virus challenge than the immunization by five injections of commercial vaccines at the same dosage. In addition, we proved that SYS6008-induced RVNAs could neutralise RABV from the China I-VII clades. Finally, 1/10 of the dosage of SYS6008 was able to stimulate significant RABV-G specificity in the T cell response. Furthermore, we found that SYS6008 induced high cellular immunity, including RABV-G-specific T cell responses and memory B cells. Our results imply that the SYS6008 rabies vaccine, with a much simpler vaccination procedure, better immunogenicity, and enhanced protective capacity, could be a candidate vaccine for post-exposure prophylaxis of rabies infections.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Humanos , Animales , Ratones , Rabia/prevención & control , Vacunas Antirrábicas/genética , Virus de la Rabia/genética , Profilaxis Posexposición/métodos , Modelos Animales de Enfermedad , Filogenia , Anticuerpos Antivirales , Macaca
10.
Sci Rep ; 13(1): 15823, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740027

RESUMEN

The ecological significance of secondary metabolites is to improve the adaptive ability of plants. Secondary metabolites, usually medicinal ingredients, are triggered by unsuitable environment, thus the quality of medicinal materials under adversity being better. The quality of the cultivated was heavily declined due to its good conditions. Radix Saposhnikoviae, the dried root of Saposhnikovia divaricata (Turcz.) Schischk., is one of the most common botanicals in Asian countries, now basically comes from cultivation, resulting in the market price being only 1/10 to 1/3 of its wild counterpart, so improving the quality of cultivated Radix Saposhnikoviae is of urgency. Nitric oxide (NO) plays a crucial role in generating reactive oxygen species and modifying the secondary metabolism of plants. This study aims to enhance the quality of cultivated Radix Saposhnikoviae by supplementing exogenous NO. To achieve this, sodium nitroprusside (SNP) was utilized as an NO provider and applied to fresh roots of S. divaricata at concentrations of 0.03, 0.1, 0.5, and 1.0 mmol/L. This study measured parameters including the activities of antioxidant enzymes, secondary metabolite synthesis enzymes such as phenylalanine ammonia-lyase (PAL), 1-aminocyclopropane-1-carboxylic acid (ACC), and chalcone synthase (CHS), as well as the contents of NO, superoxide radicals (O2·-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and four secondary metabolites. The quality of Radix Saposhnikoviae was evaluated with antipyretic, analgesic, anti-inflammatory effects, and inflammatory factors. As a result, the NO contents in the fresh roots were significantly increased under SNP, which led to a significant increase of O2·-, H2O2, and MDA. The activities of important antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were found to increase as well, with their peak levels observed on the 2nd and 3rd days. PAL, ACC, and CHS activities were also significantly enhanced, resulting in the increased secondary metabolite contents of Radix saposhnikoviae in all groups, especially the 0.5 mmol/L SNP. The four active ingredients, prim-O-glucosylcimifugin, cimifugin, 4'-O-ß-D-glucosyl-5-O-methylvisamminol, and sec-O-glucosylhamaudol, increased by 88.3%,325.0%, 55.4%, and 283.8%, respectively, on the 3rd day. The pharmaceutical effects of Radix Saposhnikoviae under 0.5 mmol/L SNP were significantly enhanced. Exogenous SNP can induce the physiological response of S. divaricata under adverse conditions and significantly improve the quality of Radix Saposhnikoviae.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Nitroprusiato/farmacología , Peroxidasa , Peroxidasas
11.
J Am Chem Soc ; 145(31): 17485-17494, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37526148

RESUMEN

Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.

12.
Sci Adv ; 9(27): eadh2885, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406120

RESUMEN

Large-scale deployment of proton exchange membrane (PEM) water electrolyzers has to overcome a cost barrier resulting from the exclusive adoption of platinum group metal (PGM) catalysts. Ideally, carbon-supported platinum used at cathode should be replaced with PGM-free catalysts, but they often undergo insufficient activity and stability subjecting to corrosive acidic conditions. Inspired by marcasite existed under acidic environments in nature, we report a sulfur doping-driven structural transformation from pyrite-type cobalt diselenide to pure marcasite counterpart. The resultant catalyst drives hydrogen evolution reaction with low overpotential of 67 millivolts at 10 milliamperes per square centimeter and exhibits no degradation after 1000 hours of testing in acid. Moreover, a PEM electrolyzer with this catalyst as cathode runs stably over 410 hours at 1 ampere per square centimeter and 60°C. The marked properties arise from sulfur doping that not only triggers formation of acid-resistant marcasite structure but also tailors electronic states (e.g., work function) for improved hydrogen diffusion and electrocatalysis.

13.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259426

RESUMEN

Morphine, one of the most efficacious analgesics, is effective in severe pain, especially in patients with concomitant painful cancers. The clinical use of morphine may be accompanied by increased immunosuppression, susceptibility to infection and postoperative tumor metastatic recurrence, and the specific mechanisms and clinical strategies to alleviate this suppression remain to be investigated. Expression of CD11b is closely associated with the macrophage phagocytosis of xenobiotic particles, bacteria or tumor cells. Here, we find that morphine at 0.1-10 nM levels inhibited CD11b expression and function on macrophages via a µ-opioid receptor (MOR)-dependent mechanism, thereby reducing macrophage phagocytosis of tumor cells, a process that can be reversed by thymopentin (TP5), a commonly used immune-enhancing adjuvant in clinical practice. By knocking down or overexpressing MOR on macrophages and using naloxone, an antagonist of the MOR receptor, and LA1, a molecule that promotes macrophage CD11b activation, we suggest that morphine may regulate macrophage phagocytosis by inhibiting the surface expression and function of macrophage CD11b through the membrane expression and activation of MOR. The CD47/SIRPα axis, which is engaged in macrophage-tumor immune escape, was not significantly affected by morphine. Notably, TP5, when combined with morphine, reversed the inhibition of macrophage phagocytosis by morphine through mechanisms that promote membrane expression of CD11b and modulate its downstream signaling (e.g., NOS2, IFNG, IL1B and TNFA, as well as AGR1, PDGFB, IL6, STAT3, and MYC). Thus, altered membrane expression and function of CD11b may mediate the inhibition of macrophage phagocytosis by therapeutic doses of morphine, and the reversal of this process by TP5 may provide an effective palliative option for clinical immunosuppression by morphine.

14.
Blood ; 142(10): 903-917, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37319434

RESUMEN

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteína 1 Inhibidora de la Diferenciación , Leucemia Mieloide Aguda , Animales , Ratones , Proteína 7 Similar a la Angiopoyetina/genética , Proteína 7 Similar a la Angiopoyetina/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo
15.
Front Pharmacol ; 14: 1184774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251340

RESUMEN

Background: Liver injury is a severe liver lesion caused by various etiologies and is one of the main areas of medical research. Panax ginseng C.A. Meyer has traditionally been used as medicine to treat diseases and regulate body functions. Ginsenosides are the main active components of ginseng, and their effects on liver injury have been extensively reported. Methods: Preclinical studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan Fang Data Knowledge Service Platforms. The Stata 17.0 was used to perform the meta-analysis, meta-regression, and subgroup analysis. Results: This meta-analysis included ginsenosides Rb1, Rg1, Rg3, and compound K (CK), in 43 articles. The overall results showed that multiple ginsenosides significantly reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST), affected oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), and catalase (CAT), and reduced levels of inflammatory factor, such as factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6). Additionally, there was a large amount of heterogeneity in the meta-analysis results. Our predefined subgroup analysis shows that the animal species, the type of liver injury model, the duration of treatment, and the administration route may be the sources of some of the heterogeneity. Conclusion: In a word, ginsenosides have good efficacy against liver injury, and their potential mechanisms of action target antioxidant, anti-inflammatory and apoptotic-related pathways. However, the overall methodological quality of our current included studies was low, and more high-quality studies are needed to confirm their effects and mechanisms further.

16.
Plants (Basel) ; 12(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050189

RESUMEN

Lily is a very important bulb crop, and interspecific distant hybridization is a crucial method of lily breeding. However, F1 interspecific hybrids tend to be highly sterile due to low levels of genetic homozygosity. This can be addressed by meiotic polyploidization, which has the advantage of reducing breeding time and being able to promote genetic recombination resulting in many variant progenies. High temperatures have been proven to induce 2n gametes via hindering a spindle formation in several plants, but little has been reported in lilies. In the present study, after observing the correlation between the development of the pollen mother cells (PMCs) and the length of the buds, 28-31 mm long buds were selected as the experimental material, which were at the stage of prophase I-metaphase I. Individual buds were induced at different temperatures (40 °C, 42 °C, and 44 °C) and durations (4 h and 6 h) using self-made multiwire heating equipment, and successfully induced fertile male gametes.. The best results were achieved with treatment of 42 °C for 4 h, reaching a maximum fertile pollen induction rate of 36.64%, while bud mortality was 40%. Two chemicals, colchicine and oryzalin, were also used by injection, and only the treatment with oryzalin obtained fertile gametes, with the highest fertile gamete rate of 15.39% at a concentration of 0.005%, while the bud mortality was 36.67%. This suggests that high temperatures have a superior effect on lily 2n gamete induction. In addition, the pollen obtained from the 6 h induction of high temperature was significantly larger than that from the 4 h induction, with an average diameter of 138.64 µm and 107.88 µm, respectively, 2.35 and 1.84 times wider than haploid pollen. The fertile pollen was crossed with four cultivars and two species, and a total of 267 embryonic seeds were obtained, with the highest embryonic rate of 4.52% in OT lily 'Mister Cas' as the parent, which had a germination rate of 26.27%. This suggests that the method of high-temperature induction for fertile gametes probably has important significance for ploidy and distant hybrid breeding in lilies.

17.
Leukemia ; 37(1): 164-177, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36352191

RESUMEN

The patients with relapsed and refractory diffuse large B-cell lymphoma (DLBCL) have poor prognosis, and a novel and effective therapeutic strategy for these patients is urgently needed. Although ubiquitin-specific protease 1 (USP1) plays a key role in cancer, the carcinogenic effect of USP1 in B-cell lymphoma remains elusive. Here we found that USP1 is highly expressed in DLBCL patients, and high expression of USP1 predicts poor prognosis. Knocking down USP1 or a specific inhibitor of USP1, pimozide, induced cell growth inhibition, cell cycle arrest and autophagy in DLBCL cells. Targeting USP1 by shRNA or pimozide significantly reduced tumor burden of a mouse model established with engraftment of rituximab/chemotherapy resistant DLBCL cells. Pimozide significantly retarded the growth of lymphoma in a DLBCL patient-derived xenograft (PDX) model. USP1 directly interacted with MAX, a MYC binding protein, and maintained the stability of MAX through deubiquitination, which promoted the transcription of MYC target genes. Moreover, pimozide showed a synergetic effect with etoposide, a chemotherapy drug, in cell and mouse models of rituximab/chemotherapy resistant DLBCL. Our study highlights the critical role of USP1 in the rituximab/chemotherapy resistance of DLBCL through deubiquitylating MAX, and provides a novel therapeutic strategy for rituximab/chemotherapy resistant DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Animales , Ratones , Humanos , Rituximab/uso terapéutico , Pimozida/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma no Hodgkin/tratamiento farmacológico , Proteasas Ubiquitina-Específicas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
18.
J Oral Pathol Med ; 52(5): 389-401, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36153671

RESUMEN

BACKGROUND: Lymph node metastasis can independently predict oral squamous cell carcinoma patients' survival. This study would investigate the genetic and cellular differences between oral squamous cell carcinoma with positive and negative lymph node metastases. METHODS: We gathered single-cell RNA sequencing and bulk gene expression data from the Cancer Genome Atlas and Gene Expression Omnibus databases. Sixty lymph node-metastasis-related genes were discovered with refined single-cell RNA sequencing data analysis, and consensus clustering provided three molecular subtypes of oral squamous cell carcinoma. Least absolute shrinkage and selection operator analyses were then utilized to establish a five-gene risk model. CIBERSORT analysis revealed the immune infiltration profile of different risk subgroups. RESULTS: Oral squamous cell carcinoma patients were classified into three subtypes based on the 60 lymph node-metastasis-related key genes identified by single-cell RNA sequencing data. Patients in Subtype 3 showed a tendency for lymph node metastasis and poorer prognosis. Moreover, five biomarkers were selected from the 60 genes to construct a five-gene risk model evaluating the risk of lymph node metastasis. A lower probability of lymph node metastasis and a better prognosis was observed in the low-risk group. The immune infiltration of three different risk groups was explored with CIBERSORT. Besides, further analysis implied different sensitivities of anticancer drugs, including immunotherapy drugs and targeted compounds, in the three risk groups. CONCLUSION: In view of intratumoral heterogeneity, we found 60 genes associated with lymph node metastasis of oral squamous cell carcinoma. Subsequently, we constructed a five-gene signature that could improve the prediction of lymph node metastasis, clinical outcome, and promote individualized treatment strategies for oral squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Metástasis Linfática/genética , Pronóstico , RNA-Seq
19.
Sci Bull (Beijing) ; 67(10): 1062-1076, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546250

RESUMEN

Transient receptor potential vanilloid1 (TRPV1) channel plays an important role in a wide range of physiological and pathological processes, and a comprehensive understanding of TRPV1 gating will create opportunities for therapeutic intervention. Recent incredible advances in cryo-electron microscopy (cryo-EM) have yielded high-resolution structures of all TRPV subtypes (TRPV1-6) and all of them share highly conserved six transmembrane (TM) domains (S1-S6). As revealed by the open structures of TRPV1 in the presence of a bound vanilloid agonist (capsaicin or resiniferatoxin), TM helicesS1 to S4 form a bundle that remains quiescent during channel activation, highlighting differences in the gating mechanism of TRPV1 and voltage-gated ion channels. Here, however, we argue that the structural dynamics rather than quiescence of S1-S4 domains is necessary for capsaicin-mediated activation of TRPV1. Using fluorescent unnatural amino acid (flUAA) incorporation and voltage-clamp fluorometry (VCF) analysis, we directly observed allostery of the S1-S4 bundle upon capsaicin binding. Covalent occupation of VCF-identified sites, single-channel recording, cell apoptosis analysis, and exploration of the role of PSFL828, a novel non-vanilloid agonist we identified, have collectively confirmed the essential role of this coordinated S1-S4 motility in capsaicin-mediated activation of TRPV1. This study concludes that, in contrast to cryo-EM structural studies, vanilloid agonists are also required for S1-S4 movement during TRPV1 activation. Redefining the gating process of vanilloid agonists and the discovery of new non-vanilloid agonists will allow the evaluation of new strategies aimed at the development of TRPV1 modulators.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales de Potencial de Receptor Transitorio/metabolismo , Capsaicina/farmacología , Canales Catiónicos TRPV/agonistas , Microscopía por Crioelectrón , Dominios Proteicos
20.
Cell Res ; 32(12): 1105-1123, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302855

RESUMEN

Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Carcinogénesis , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Histona Desacetilasas , Leucemia Mieloide Aguda/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...