Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circulation ; 148(14): 1099-1112, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37602409

RESUMEN

BACKGROUND: Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS: Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS: We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS: Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.


Asunto(s)
MicroARNs , Infarto del Miocardio , Ratas , Ratones , Humanos , Animales , Dependovirus/genética , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/terapia , Infarto del Miocardio/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/genética , Reprogramación Celular , Fibroblastos/metabolismo
2.
J Clin Ultrasound ; 50(9): 1368-1372, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36149806

RESUMEN

Vanishing bile duct syndrome (VBDS) is a pathological concept that refers to the gradual reduction, destruction and disappearance of intrahepatic bile ducts caused by drugs, immunity, malignancy, and infections (including HIV and tuberculosis). Its clinical manifestation is cholestasis. The pathological diagnostic criteria for VBDS are the occurrence of intralobular vanishing bile ducts in more than 50% of 10 or more portal areas. At present, the diagnosis of VBDS still relies on liver biopsy. Contrast-enhanced ultrasound has been widely used in the diagnosis of liver-related diseases. The intravenous injection of microbubbles could enhance the observation of tissue microcirculation and significantly expand the possibility of ultrasound hemodynamic research. VBDS is a rare disease, and there are few reports on the early ultrasound and CEUS manifestations. The purpose of this report is to explore the unique performance of ultrasound and CEUS in the diagnosis of VBDS.


Asunto(s)
Colestasis , Cirrosis Hepática Biliar , Humanos , Cirrosis Hepática Biliar/complicaciones , Cirrosis Hepática Biliar/patología , Colestasis/diagnóstico , Colestasis/etiología , Colestasis/patología , Conductos Biliares Intrahepáticos/patología , Conductos Biliares , Ultrasonografía/efectos adversos
3.
Int J Gen Med ; 15: 5159-5171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35642202

RESUMEN

Background: At present, there is a lack of cheap, effective and convenient detection methods for hepatitis B-related liver fibrosis, especially in the developing area. Aim: To evaluate the non-invasive methods for the significant and advanced fibrosis stage in chronic hepatitis B virus (HBV) patients in basic hospitals and to assess their diagnostic utility. Methods: The study included 436 consecutive naive HBV individuals who had their livers biopsied. They were examined in one week using aspartate aminotransferase-to-aspartate aminotransferase ratio (AAR), age-platelet index (API), aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis-4 (FIB-4), Forns, gamma-glutamyl transpeptidase-to-platelet ratio (GPR), S-index and transient elastography (TE). Scheuer scoring system was used to determine the histologic fibrosis grades (S0-S4). The diagnostic effectiveness was assessed using AUROCs and the DeLong test, both of which were based on statistical comparisons. Results: For both substantial (≧S2) and advanced (≧S3) fibrosis phases, TE had good diagnostic performance in determining the hepatic fibrosis. Similar diagnostic performance was shown with Forns and S-index when it came to detecting fibrosis stages lower than S3. One model's diagnostic value was not significantly improved by combining serum models. Correlation coefficients between clinical features and fibrosis phases were greatest for Forns (r = 0.397), S-index (r = 0.382) and TE (r = 0.535) when compared to other variables. Conclusion: This investigation showed that Forns and S-index may be helpful strategies for detecting advanced fibrosis in HBV patients admitted to community hospitals.

4.
Cell Stem Cell ; 25(1): 87-102.e9, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31271750

RESUMEN

Ectopic expression of combinations of transcription factors (TFs) can drive direct lineage conversion, thereby reprogramming a somatic cell's identity. To determine the molecular mechanisms by which Gata4, Mef2c, and Tbx5 (GMT) induce conversion from a cardiac fibroblast toward an induced cardiomyocyte, we performed comprehensive transcriptomic, DNA-occupancy, and epigenomic interrogation throughout the reprogramming process. Integration of these datasets identified new TFs involved in cardiac reprogramming and revealed context-specific roles for GMT, including the ability of Mef2c and Tbx5 to independently promote chromatin remodeling at previously inaccessible sites. We also find evidence for cooperative facilitation and refinement of each TF's binding profile in a combinatorial setting. A reporter assay employing newly defined regulatory elements confirmed that binding of a single TF can be sufficient for gene activation, suggesting that co-binding events do not necessarily reflect synergy. These results shed light on fundamental mechanisms by which combinations of TFs direct lineage conversion.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Factores de Transcripción MEF2/metabolismo , Miocitos Cardíacos/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Reprogramación Celular , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Factor de Transcripción GATA4/genética , Factores de Transcripción MEF2/genética , Aprendizaje Automático , Ratones , Unión Proteica , Proteínas de Dominio T Box/genética , Activación Transcripcional
5.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-27834668

RESUMEN

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Asunto(s)
Benzamidas/farmacología , Reprogramación Celular/efectos de los fármacos , Dioxoles/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Factores de Transcripción/metabolismo , Animales , Benzamidas/uso terapéutico , Células Cultivadas , Dioxoles/uso terapéutico , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Corazón/diagnóstico por imagen , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Imagen por Resonancia Magnética , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
6.
Biomaterials ; 103: 1-11, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27376554

RESUMEN

Reprogramming of fibroblasts to cardiomyocytes offers exciting potential in cell therapy and regenerative medicine, but has low efficiency. We hypothesize that physical cues may positively affect the reprogramming process, and studied the effects of periodic mechanical stretch, substrate stiffness and microgrooved substrate on reprogramming yield. Subjecting reprogramming fibroblasts to periodic mechanical stretch and different substrate stiffness did not improve reprogramming yield. On the other hand, culturing the cells on microgrooved substrate enhanced the expression of cardiomyocyte genes by day 2 and improved the yield of partially reprogrammed cells at day 10. By combining microgrooved substrate with an existing optimized culture protocol, yield of reprogrammed cardiomyocytes with striated cardiac troponin T staining and spontaneous contractile activity was increased. We identified the regulation of Mkl1 activity as a new mechanism by which microgroove can affect reprogramming. Biochemical approach could only partially recapitulate the effect of microgroove. Microgroove demonstrated an additional effect of enhancing organization of sarcomeric structure, which could not be recapitulated by biochemical approach. This study provides insights into new mechanisms by which topographical cues can affect cellular reprogramming.


Asunto(s)
Reprogramación Celular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Mecanotransducción Celular/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Andamios del Tejido , Animales , Animales Recién Nacidos , Técnicas de Cultivo Celular por Lotes/métodos , Células Cultivadas , Módulo de Elasticidad/fisiología , Ratones , Ratones Transgénicos , Resistencia a la Tracción/fisiología , Ingeniería de Tejidos/métodos
7.
Int J Nanomedicine ; 10: 1841-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25834424

RESUMEN

The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.


Asunto(s)
Reprogramación Celular/fisiología , Fibroblastos/fisiología , Miocitos Cardíacos/citología , ARN Mensajero/genética , Transfección/métodos , Animales , Células Cultivadas , Fibroblastos/citología , Regulación de la Expresión Génica , Marcadores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lípidos/administración & dosificación , Lípidos/química , Lípidos/toxicidad , Ratones Transgénicos , Miocardio/citología , Miocardio/ultraestructura , Miocitos Cardíacos/fisiología , Oligopéptidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Dominio T Box/genética
8.
Stem Cell Reports ; 2(1): 18-25, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24678451

RESUMEN

NANOG is a divergent homeobox protein and a core component of the transcriptional circuitry that sustains pluripotency and self-renewal. Although NANOG has been extensively studied on the transcriptional level, little is known regarding its posttranslational regulation, likely due to its low abundance and challenging physical properties. Here, we identify eleven phosphorylation sites on endogenous human NANOG, nine of which mapped to single amino acids. To screen for the signaling molecules that impart these modifications, we developed the multiplexed assay for kinase specificity (MAKS). MAKS simultaneously tests activity for up to ten kinases while directly identifying the substrate and exact site of phosphorylation. Using MAKS, we discovered site-specific phosphorylation by ERK2 and CDK1/CyclinA2, providing a putative link between key signaling pathways and NANOG.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Ciclina A2/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/aislamiento & purificación , Humanos , Datos de Secuencia Molecular , Proteína Homeótica Nanog , Fosfopéptidos/análisis , Fosforilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Cell ; 153(5): 1134-48, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23664764

RESUMEN

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Animales , Diferenciación Celular , Cromatina/metabolismo , Islas de CpG , Células Madre Embrionarias/citología , Histonas/metabolismo , Humanos , Metilación , Neoplasias/genética , Regiones Promotoras Genéticas , Pez Cebra/embriología
10.
Proc Natl Acad Sci U S A ; 109(22): 8411-6, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586074

RESUMEN

We have developed and implemented a sequence identification algorithm (inSeq) that processes tandem mass spectra in real-time using the mass spectrometer's (MS) onboard processors. The inSeq algorithm relies on accurate mass tandem MS data for swift spectral matching with high accuracy. The instant spectral processing technology takes ∼16 ms to execute and provides information to enable autonomous, real-time decision making by the MS system. Using inSeq and its advanced decision tree logic, we demonstrate (i) real-time prediction of peptide elution windows en masse (∼3 min width, 3,000 targets), (ii) significant improvement of quantitative precision and accuracy (~3x boost in detected protein differences), and (iii) boosted rates of posttranslation modification site localization (90% agreement in real-time vs. offline localization rate and an approximate 25% gain in localized sites). The decision tree logic enabled by inSeq promises to circumvent problems with the conventional data-dependent acquisition paradigm and provides a direct route to streamlined and expedient targeted protein analysis.


Asunto(s)
Algoritmos , Péptidos/análisis , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Sitios de Unión , Células Cultivadas , Cromatografía Líquida de Alta Presión , Bases de Datos de Proteínas , Árboles de Decisión , Humanos , Datos de Secuencia Molecular , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteínas/química , Reproducibilidad de los Resultados , Programas Informáticos , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 109(19): 7162-8, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22474382

RESUMEN

The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography-MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Serina/metabolismo , Treonina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Inmunoprecipitación , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/genética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción SOXB1/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Treonina/química , Treonina/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
12.
Stem Cells ; 30(4): 623-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22213113

RESUMEN

Fibroblast growth factor (FGF), transforming growth factor (TGF)/Nodal, and Insulin/insulin-like growth factor (IGF) signaling pathways are sufficient to maintain human embryonic stem cells (ESCs) and induced pluripotent stem cells in a proliferative, undifferentiated state. Here, we show that only a few FGF family members (FGF2, FGF4, FGF6, and FGF9) are able to sustain strong extracellular-signal-regulated kinase (ERK) phosphorylation and NANOG expression levels in human ESCs. Surprisingly, FGF1, which is reported to target the same set of receptors as FGF2, fails to sustain ERK phosphorylation and NANOG expression under standard culture conditions. We find that the failure of FGF1 to sustain ES is due to thermal instability of the wild-type protein, not receptor specificity, and that a mutated thermal-stable FGF1 sustains human ESCs and supports both differentiation and reprogramming protocols.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Temperatura , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Mutación/genética , Fosforilación/efectos de los fármacos , Células Madre Pluripotentes/enzimología , Estabilidad Proteica/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
13.
Cell Res ; 21(10): 1393-409, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21876557

RESUMEN

Pluripotency, the ability of a cell to differentiate and give rise to all embryonic lineages, defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes, accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells, as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency, we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation, except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression, suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers, and observed much greater dynamics in chromatin modifications, especially H3K4me1 and H3K27ac, which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Epigénesis Genética/fisiología , Células Madre Pluripotentes/metabolismo , Transcripción Genética/fisiología , Línea Celular , Linaje de la Célula/fisiología , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/citología , Elementos de Facilitación Genéticos/fisiología , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes/citología
14.
Cell Stem Cell ; 8(3): 326-34, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362572

RESUMEN

Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Endodermo/citología , Endodermo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Proteína Homeótica Nanog
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA