Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Genet ; 12: 709555, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567069

RESUMEN

Genomic studies have been a major approach to elucidating disease etiology and to exploring potential targets for treatments of many complex diseases. Statistical analyses in these studies often face the challenges of multiplicity, weak signals, and the nature of dependence among genetic markers. This situation becomes even more complicated when multi-omics data are available. To integrate the data from different platforms, various integrative analyses have been adopted, ranging from the direct union or intersection operation on sets derived from different single-platform analysis to complex hierarchical multi-level models. The former ignores the biological relationship between molecules while the latter can be hard to interpret. We propose in this study an integrative approach that combines both single nucleotide variants (SNVs) and copy number variations (CNVs) in the same genomic unit to co-localize the concurrent effect and to deal with the sparsity due to rare variants. This approach is illustrated with simulation studies to evaluate its performance and is applied to low-density lipoprotein cholesterol and triglyceride measurements from Taiwan Biobank. The results show that the proposed method can more effectively detect the collective effect from both SNVs and CNVs compared to traditional methods. For the biobank analysis, the identified genetic regions including the gene VNN2 could be novel and deserve further investigation.

2.
J Adv Res ; 30: 147-158, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026292

RESUMEN

Introduction: A population-specific genomic reference is important for research and clinical practice, yet it remains unavailable for Han Chinese (HC) in Taiwan. Objectives: We report the first whole genome sequencing (WGS) database of HC (1000 Taiwanese genome (1KTW-WGS)) and demonstrate several applications to cardiovascular medicine. Methods: Whole genomes of 997 HC were sequenced to at least 30X depth. A total of 20,117 relatively healthy HC individuals were genotyped using a customized Axiom GWAS array. We performed a genome-wide genotype imputation technique using IMPUTE2. Results: We identified 26.7 million single-nucleotide variants (SNVs) and 4.2 million insertions-deletions. Of the SNVs, 16.1% were novel relative to dbSNP (build 152), and 34.2% were novel relative to gnomAD. A total of 18,450 healthy HC individuals were genotyped using a customized Genome-Wide Association Study (GWAS) array. We identified hypertension-associated variants and developed a hypertension prediction model based on the correlation between the WGS data and GWAS data (combined clinical and genetic models, AUC 0.887), and also identified 3 novel hyperlipidemia-associated variants. Each individual carried an average of 16.42 (SD = 3.72) disease-causing variants. Additionally, we established an online SCN5A (an important cardiac gene) database that can be used to explore racial differences. Finally, pharmacogenetics studies identified HC population-specific SNVs in genes (CYP2C9 and VKORC1) involved in drug metabolism and blood clotting. Conclusion: This research demonstrates the benefits of constructing a population-specific genomic reference database for precision medicine.


Asunto(s)
Pueblo Asiatico/genética , Enfermedades Cardiovasculares/genética , Secuenciación Completa del Genoma/métodos , Enfermedades Cardiovasculares/sangre , China , Bases de Datos Factuales , Femenino , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Hiperlipidemias/genética , Hipertensión/genética , Mutación INDEL , Masculino , Polimorfismo de Nucleótido Simple , Taiwán , Vitamina K Epóxido Reductasas/genética
3.
Front Immunol ; 12: 630318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790902

RESUMEN

Macrophages comprise the front line of defense against various pathogens. Classically activated macrophages (M1), induced by IFN-γ and LPS, highly express inflammatory cytokines and contribute to inflammatory processes. By contrast, alternatively activated macrophages (M2) are induced by IL-4 and IL-13, produce IL-10, and display anti-inflammatory activity. Adenylate kinase 4 (Ak4), an enzyme that transfers phosphate group among ATP/GTP, AMP, and ADP, is a key modulator of ATP and maintains the homeostasis of cellular nucleotides which is essential for cell functions. However, its role in regulating the function of macrophages is not fully understood. Here we report that Ak4 expression is induced in M1 but not M2 macrophages. Suppressing the expression of Ak4 in M1 macrophages with shRNA or siRNA enhances ATP production and decreases ROS production, bactericidal ability and glycolysis in M1 cells. Moreover, Ak4 regulates the expression of inflammation genes, including Il1b, Il6, Tnfa, Nos2, Nox2, and Hif1a, in M1 macrophages. We further demonstrate that Ak4 inhibits the activation of AMPK and forms a positive feedback loop with Hif1α to promote the expression of inflammation-related genes in M1 cells. Furthermore, RNA-seq analysis demonstrates that Ak4 also regulates other biological processes in addition to the expression of inflammation-related genes in M1 cells. Interestingly, Ak4 does not regulate M1/M2 polarization. Taken together, our study uncovers a potential mechanism linking energy consumption and inflammation in macrophages.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Adenilato Quinasa/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Inflamación/etiología , Macrófagos/fisiología , Adenosina Trifosfato/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Femenino , Glucólisis , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
4.
Circ Genom Precis Med ; 13(4): e002797, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32490690

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is an oligogenic arrhythmic disease with increased risk of sudden cardiac arrest. Several BrS or ECG traits-related single-nucleotide polymorphisms (SNPs) were identified through previous genome-wide association studies in white patients. We aimed to validate these SNPs in BrS patients in the Taiwanese population, assessing the cumulative effect of risk alleles and the BrS-polygenic risk score in predicting cardiac events. METHODS: We genotyped 190 unrelated BrS patients using the TWB Array, and Taiwan Biobank was used as controls. SNPs not included in the array were imputed by IMPUTE2. Cox proportional hazards model was used to evaluate the associations between each particular SNP, the collective BrS-polygenic risk score, and clinical outcomes. RESULTS: Of the 88 previously reported SNPs, 22 were validated in Taiwanese BrS patients (P<0.05). Of the 22 SNPs, 2 (rs10428132 and rs9388451) were linked with susceptibility to BrS, 10 were SNPs previously reaching genome-wide significance, and 10 were SNPs associated with ECG traits. For the 3 most commonly reported SNPs, disease risk increased consistently with the number of risk alleles (odds ratio, 3.54; Ptrend=1.38×10-9 for 5 risk alleles versus 1). Similar patterns were observed in both SCN5A mutation+ (odds ratio, 3.66; Ptrend=0.049) and SCN5A mutation- (odds ratio, 3.75; Ptrend=8.54×10-9) subgroups. Furthermore, BrS patients without SCN5A mutations had more risk alleles than BrS patients with SCN5A mutations regardless of the range of polygenic risk scores. Three SNPs (rs4687718, rs7784776, and rs2968863) showed significant associations with the composite outcome (sudden cardiac arrest plus syncope, hazard ratio, 2.13, 1.48, and 0.41; P=0.02, 0.006, and 0.008, respectively). CONCLUSIONS: Our findings suggested that some SNPs associated with BrS or ECG traits exist across multiple populations. The cumulative risk of the BrS-related SNPs is similar to that in white BrS patients, but it appears to correlate with the absence of SCN5A mutations.


Asunto(s)
Síndrome de Brugada/genética , Estudio de Asociación del Genoma Completo , Adulto , Alelos , Pueblo Asiatico/genética , Síndrome de Brugada/patología , Estudios de Casos y Controles , Electrocardiografía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.5/genética , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Sistema de Registros , Medición de Riesgo , Análisis de Secuencia de ADN , Taiwán
5.
PLoS Comput Biol ; 16(5): e1007797, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365089

RESUMEN

Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that can vary in dosage and length. CNVs comprise a large proportion of variation in human genomes and impact health conditions. To detect rare CNV associations, kernel-based methods have been shown to be a powerful tool due to their flexibility in modeling the aggregate CNV effects, their ability to capture effects from different CNV features, and their accommodation of effect heterogeneity. To perform a kernel association test, a CNV locus needs to be defined so that locus-specific effects can be retained during aggregation. However, CNV loci are arbitrarily defined and different locus definitions can lead to different performance depending on the underlying effect patterns. In this work, we develop a new kernel-based test called CONCUR (i.e., copy number profile curve-based association test) that is free from a definition of locus and evaluates CNV-phenotype associations by comparing individuals' copy number profiles across the genomic regions. CONCUR is built on the proposed concepts of "copy number profile curves" to describe the CNV profile of an individual, and the "common area under the curve (cAUC) kernel" to model the multi-feature CNV effects. The proposed method captures the effects of CNV dosage and length, accounts for the numerical nature of copy numbers, and accommodates between- and within-locus etiological heterogeneity without the need to define artificial CNV loci as required in current kernel methods. In a variety of simulation settings, CONCUR shows comparable or improved power over existing approaches. Real data analyses suggest that CONCUR is well powered to detect CNV effects in the Swedish Schizophrenia Study and the Taiwan Biobank.


Asunto(s)
Biología Computacional/métodos , Variaciones en el Número de Copia de ADN/genética , Algoritmos , Área Bajo la Curva , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , Análisis Espacial
6.
BMC Bioinformatics ; 19(1): 391, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355338

RESUMEN

BACKGROUND: Current methods for gene-set or pathway analysis are usually designed to test the enrichment of a single gene-set. Once the analysis is carried out for each of the sets under study, a list of significant sets can be obtained. However, if one wishes to further prioritize the importance or strength of association of these sets, no such quantitative measure is available. Using the magnitude of p-value to rank the pathways may not be appropriate because p-value is not a measure for strength of significance. In addition, when testing each pathway, these analyses are often implicitly affected by the number of differentially expressed genes included in the set and/or affected by the dependence among genes. RESULTS: Here we propose a two-stage procedure to prioritize the pathways/gene-sets. In the first stage we develop a pathway-level measure with three properties. First, it contains all genes (differentially expressed or not) in the same set, and summarizes the collective effect of all genes per sample. Second, this pathway score accounts for the correlation between genes by synchronizing their correlation directions. Third, the score includes a rank transformation to enhance the variation among samples as well as to avoid the influence of extreme heterogeneity among genes. In the second stage, all scores are included simultaneously in a Bayesian logistic regression model which can evaluate the strength of association for each set and rank the sets based on posterior probabilities. Simulations from Gaussian distributions and human microarray data, and a breast cancer study with RNA-Seq are considered for demonstration and comparison with other existing methods. CONCLUSIONS: The proposed summary pathway score provides for each sample an overall evaluation of gene expression in a gene-set. It demonstrates the advantages of including all genes in the set and the synchronization of correlation direction. The simultaneous utilization of all pathway-level scores in a Bayesian model not only offers a probabilistic evaluation and ranking of the pathway association but also presents good accuracy in identifying the top-ranking pathways. The resulting recommendation list of ranked pathways can be a reference for potential target therapy or for future allocation of research resources.


Asunto(s)
Estudios de Asociación Genética , Probabilidad , Transducción de Señal , Teorema de Bayes , Neoplasias de la Mama/genética , Simulación por Computador , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...