Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Phys Rev Lett ; 130(14): 146101, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084444

RESUMEN

Because of the half-filled t_{2g}-electron configuration, the BO_{6} octahedral distortion in a 3d^{3} perovskite system is usually very limited. In this Letter, a perovskitelike oxide Hg_{0.75}Pb_{0.25}MnO_{3} (HPMO) with a 3d^{3} Mn^{4+} state was synthesized by using high pressure and high temperature methods. This compound exhibits an unusually large octahedral distortion enhanced by approximately 2 orders of magnitude compared with that observed in other 3d^{3} perovskite systems like RCr^{3+}O_{3} (R=rare earth). Essentially different from centrosymmetric HgMnO_{3} and PbMnO_{3}, the A-site doped HPMO presents a polar crystal structure with the space group Ama2 and a substantial spontaneous electric polarization (26.5 µC/cm^{2} in theory) arising from the off-center displacements of A- and B-site ions. More interestingly, a prominent net photocurrent and switchable photovoltaic effect with a sustainable photoresponse were observed in the current polycrystalline HPMO. This Letter provides an exceptional d^{3} material system which shows unusually large octahedral distortion and displacement-type ferroelectricity violating the "d^{0}-ness" rule.

2.
Sci Rep ; 9(1): 7490, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097727

RESUMEN

We report a new diluted ferromagnetic semiconductor Li1+y(Cd,Mn)P, wherein carrier is doped via excess Li while spin is doped by isovalence substitution of Mn2+ into Cd2+. The extended Cd 4d-orbitals lead to more itinerant characters of Li1+y(Cd,Mn)P than that of analogous Li1+y(Zn,Mn)P. A higher Curie temperature of 45 K than that for Li1+y(Zn,Mn)P is obtained in Li1+y(Cd,Mn)P polycrystalline samples by Arrott plot technique. The p-type carriers are determined by Hall effect measurements. The first principle calculations and X-ray diffraction measurements indicate that occupation of excess Li is at Cd sites rather than the interstitial site. Consequently holes are doped by excess Li substitution. More interestingly Li1+y(Cd,Mn)P shows a very low coercive field (<100 Oe) and giant negative magnetoresistance (~80%) in ferromagnetic state that will benefit potential spintronics applications.

3.
Nanoscale ; 9(35): 13214-13221, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28853487

RESUMEN

Introducing and modulating the oxygen deficiency concentration have been received as an effective way to obtain high catalytic activity in perovskite oxides. However, it is difficult to control the oxygen vacancy in conventional oxygen defect engineering due to harsh reaction conditions at elevated temperatures and the reducing atmosphere, which make it impractical for many technological applications. Herein, we report a new approach to oxygen defect engineering based on the combination of the current effect and temperature cycling at low temperature. Our investigations revealed that the electrical conductivity of the (011)-La0.7Sr0.3CoO3/PMN-PT film changes continuously from metallicity to insulativity under repeated transport measurements below room temperature, which indicates the transformation of the Co4+ state to Co3+ in the film. Further experiments and analysis revealed that oxygen vacancies can be well regulated by the combined current effect and temperature cycling in repeated measurements, which results in a decrease of Co4+/Co3+ and thus the remarkable variation of conductive properties of the film. Our work provides a simple and highly efficient method to engineer oxygen vacancies in perovskite-type oxides and brings new opportunities in designing high-efficiency oxidation catalysts.

4.
Ultramicroscopy ; 182: 156-162, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28689082

RESUMEN

The effect of the tilt of the crystallographic orientation with respect to an incident electron probe on high-angle annular dark field (HAADF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) is investigated in experiment and simulation. A small specimen tilt can lead to unequal deviations of different atom species in the HAADF image and result in further relative displacement between anion and cation. Simulated HAADF images also confirm that the crystal tilt causes an artifact in atom polarization. The effect is derived from the scattering abilities of different atoms.

5.
Sci Rep ; 7: 44367, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300156

RESUMEN

Recently, theoretical studies show that layered HfTe5 is at the boundary of weak &strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic &crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors.

6.
Sci Rep ; 7: 39699, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051188

RESUMEN

Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

7.
Ultramicroscopy ; 166: 1-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27093687

RESUMEN

STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation.

8.
Sci Rep ; 4: 6679, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25327696

RESUMEN

Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.

9.
Sci Rep ; 4: 6206, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25158695

RESUMEN

Spin state controlling has always been a focus of intensive studies due to its importance for novel effect exploration and information technology. Complex oxides with competitive mechanisms are suitable objects of study for this purpose due to their susceptibility to external stimuli. Perovskite cobaltate La(1-x)Sr(x)CoO3 is one of such oxides. Combined effects of lattice strains and hole-doping have been studied for the LSCO films with 0 ≤ x ≤ 0.5. It is found that the lattice strain, either tensile or compressive, destabilizes the ferromagnetic (FM) state of the epitaxial films, leading to a nonmagnetic state that extensively exists in a doping window embedding deep into the range of the FM phase in bulk counterparts. Density functional theory calculations reveal a distinct spin state transition due to the combined effects of lattice distortion and hole-doping, explaining the unique magnetic behaviors of LSCO.

10.
Nat Commun ; 4: 2764, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24202286

RESUMEN

Charge-trapping memory with high-κ insulator films is a candidate for future memory devices. Many efforts with different indirect methods have been made to confirm the trapping position of the charges, but the reported results in the literatures are contrary, from the bottom to the top of the trapping layers. Here we characterize the local charge distribution in the high-κ dielectric stacks under different bias with in situ electron holography. The retrieved phase change induced by external bias strength is visualized with high spatial resolution and the negative charges aggregated on the interface between Al2O3 block layer and HfO2 trapping layer are confirmed. Moreover, the positive charges are discovered near the interface between HfO2 and SiO2 films, which may have an impact on the performance of the charge-trapping memory but were neglected in previous models and theory.

11.
J Phys Condens Matter ; 25(36): 362204, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23945091

RESUMEN

The pressure-induced superconductivity and structural evolution of Bi2Se3 single crystals are studied. The emergence of superconductivity at an onset transition temperature (Tc) of about 4.4 K is observed at around 12 GPa. Tc increases rapidly to a maximum of 8.2 K at 17.2 GPa, decreases to around 6.5 K at 23 GPa, and then remains almost constant with further increases in pressure. Variations in Tc with respect to pressure are closely related to the carrier density, which increases by over two orders of magnitude from 2 to 23 GPa. High-pressure synchrotron radiation measurements reveal structural transitions at around 12, 20, and above 29 GPa. A phase diagram of superconductivity versus pressure is also constructed.

12.
Sci Rep ; 3: 2016, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23783511

RESUMEN

Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.

13.
Nat Commun ; 4: 1442, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23385587

RESUMEN

Diluted magnetic semiconductors have received much attention due to their potential applications for spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since the 1990s. The simultaneous spin and charge doping via hetero-valent (Ga(3+),Mn(2+)) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Here we report the synthesis of a new diluted magnetic semiconductor (Ba(1-x)K(x))(Zn(1-y)Mn(y))(2)As(2), which is isostructural to the 122 iron-based superconductors with the tetragonal ThCr(2)Si(2) (122) structure. Holes are doped via (Ba(2+), K(1+)) replacements, while spins via isovalent (Zn(2+),Mn(2+)) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with T(C) up to 180 K, which is comparable to the highest T(C) for (Ga,Mn)As and significantly enhanced from T(C) up to 50 K of the '111'-based Li(Zn,Mn)As. Moreover, ferromagnetic (Ba,K)(Zn,Mn)(2)As(2) shares the same 122 crystal structure with semiconducting BaZn(2)As(2), antiferromagnetic BaMn(2)As(2) and superconducting (Ba,K)Fe(2)As(2), which makes them promising for the development of multilayer functional devices.

14.
Artículo en Inglés | MEDLINE | ID: mdl-22029636

RESUMEN

Consumption of nassariid gastropods often leads to poisoning incidents in some coastal provinces in China. To elucidate the pattern of toxicity dynamics and origin of toxins, samples of gastropod Nassarius spp. were collected from late May to early August 2007 from Lianyungang, Jiangsu province, where the poisoning incidents have been frequently reported. Toxicity was first screened with the mouse bioassay method, and tetrodotoxin and its analogues (TTXs) were analysed with high-performance liquid chromatography coupled with an ion-trap mass spectrometer (HPLC-MS(n)). The toxicity of nassariid N. semiplicatus showed an 'M'-shaped pattern of fluctuation during the sampling season. Two peaks of toxicity appeared in late May and late July. The maximum toxicity was recorded on 24 May, with the value of 846 mouse unit (MU) g(-1) of tissue (wet weight). TTX and its analogues trideoxyTTX, 4-epiTTX, anhydroTTX and oxoTTX were detected in the nassariid samples. TrideoxyTTX but not TTX was the major toxin in all the samples. No paralytic shellfish poison (PSP) was detected in the sample with the maximum toxicity by HPLC-FLD analysis. Variation of TTX content in the tissue of nassariid gastropods correlates well with the dynamics of toxicity. It is suggested that TTXs are the major toxins corresponding to the toxicity of the nassariids, and May and July are the high-risk seasons for consumption of nassariids, which is critical for the management of poisoning incidents.


Asunto(s)
Gastrópodos/efectos de los fármacos , Biología Marina , Contaminantes Químicos del Agua/toxicidad , Animales , China , Cromatografía Líquida de Alta Presión , Gastrópodos/metabolismo , Ratones , Estaciones del Año , Contaminantes Químicos del Agua/metabolismo
15.
Nat Commun ; 2: 422, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21829184

RESUMEN

In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li(1+y)(Zn(1-x)Mn(x))As in bulk materials. Ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess (y=0.05-0.2) compounds with Mn concentrations of x=0.02-0.15, which have p-type metallic carriers. This is presumably due to excess Li in substitutional Zn sites. Semiconducting LiZnAs, ferromagnetic Li(Zn,Mn)As, antiferromagnetic LiMnAs, and superconducting LiFeAs systems share square lattice As layers, which may enable development of novel junction devices in the future.

16.
Proc Natl Acad Sci U S A ; 108(1): 24-8, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173267

RESUMEN

We report a successful observation of pressure-induced superconductivity in a topological compound Bi(2)Te(3) with T(c) of ∼3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi(2)Te(3) single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi(2)Te(3) due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.


Asunto(s)
Bismuto/química , Conductividad Eléctrica , Presión , Telurio/química , Cristalografía por Rayos X , Sincrotrones , Difracción de Rayos X
17.
IET Syst Biol ; 2(5): 222-33, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19045818

RESUMEN

One goal of systems biology is to understand how genome-encoded parts interact to produce quantitative phenotypes. The Alpha Project is a medium-scale, interdisciplinary systems biology effort that aims to achieve this goal by understanding fundamental quantitative behaviours of a prototypic signal transduction pathway, the yeast pheromone response system from Saccharomyces cerevisiae. The Alpha Project distinguishes itself from many other systems biology projects by studying a tightly bounded and well-characterised system that is easily modified by genetic means, and by focusing on deep understanding of a discrete number of important and accessible quantitative behaviours. During the project, the authors have developed tools to measure the appropriate data and develop models at appropriate levels of detail to study a number of these quantitative behaviours. The authors have also developed transportable experimental tools and conceptual frameworks for understanding other signalling systems. In particular, the authors have begun to interpret system behaviours and their underlying molecular mechanisms through the lens of information transmission, a principal function of signalling systems. The Alpha Project demonstrates that interdisciplinary studies that identify key quantitative behaviours and measure important quantities, in the context of well-articulated abstractions of system function and appropriate analytical frameworks, can lead to deeper biological understanding. The authors' experience may provide a productive template for systems biology investigations of other cellular systems.


Asunto(s)
Modelos Biológicos , Feromonas/metabolismo , Proteoma/metabolismo , Investigación/tendencias , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Simulación por Computador , Mapeo de Interacción de Proteínas/métodos
18.
Proc Natl Acad Sci U S A ; 105(20): 7115-9, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18480262

RESUMEN

The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.


Asunto(s)
Bario/química , Compuestos de Calcio/química , Compuestos de Calcio/síntesis química , Calcio/química , Óxidos/química , Rutenio/química , Estroncio/química , Titanio/química , Química Física/métodos , Cristalografía por Rayos X , Geología/métodos , Hierro/química , Magnetismo , Modelos Químicos , Óxidos/síntesis química , Presión , Temperatura
19.
Clin Exp Dermatol ; 33(3): 229-33, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18355359

RESUMEN

We review the key developments in our understanding of subcorneal pustular dermatosis (SCPD, also known as Sneddon-Wilkinson disease) over the past 50 years. SCPD is a rare, chronic, sterile pustular eruption that was first described by Sneddon and Wilkinson in 1956. The primary lesions are pea-sized pustules classically described as half-pustular, half-clear flaccid fluid blisters. Histologically the salient feature is a subcorneal accumulation of neutrophils, suggesting the presence of chemoattractants such as tumour necrosis factor (TNF)alpha in the uppermost epidermis. However, to date its exact pathophysiology is unknown. Cases in association with pyoderma gangrenosum, benign monoclonal IgA gammopathy and multiple myeloma are well documented. There are anecdotal reports of SCPD associated with other internal malignancies such as chronic lymphocytic leukaemia, thymoma, apudoma and epidermoid carcinoma of the lung. The treatment of choice is dapsone. Therapeutic alternatives include retinoids, phototreatment with psoralen ultraviolet (UV) A, broadband or narrow band UVB and corticosteroids. Anecdotal uses of tacalcitol, ketoconazole, azithromycin, tetracycline, minocycline, vitamin E, ciclosporin, colchicine, mizoribine, mebhydrolin, infliximab and adalimumab with mycophenolate mofetil have all been reported.


Asunto(s)
Inmunoglobulina A , Piodermia Gangrenosa , Enfermedades Cutáneas Vesiculoampollosas , Antiinflamatorios no Esteroideos/uso terapéutico , Vesícula/etiología , Dapsona/uso terapéutico , Diagnóstico Diferencial , Femenino , Humanos , Inmunoglobulina A/metabolismo , Masculino , Paraproteinemias/diagnóstico , Piodermia Gangrenosa/tratamiento farmacológico , Piodermia Gangrenosa/patología , Enfermedades Cutáneas Vesiculoampollosas/tratamiento farmacológico , Enfermedades Cutáneas Vesiculoampollosas/patología , Resultado del Tratamiento
20.
Int J Food Microbiol ; 116(1): 186-9, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17320993

RESUMEN

In the present study, the growth and production of beta-galactosidase by Bifidobacterium longum CCRC 15708 in a 5-L jar fermenter as influenced by cultivation temperature (27-42 degrees C), medium pH (4.5-7.5) and agitation speed (5-200 rpm) were evaluated. In general, it was found that a cultivation temperature of 37 degrees C proved optimal for both growth and beta-galactosidase production by the test organism. Although the growth of the test organism was the highest in the culture with pH controlled at 4.5-6.5, the culture with pH controlled at 6.5 resulted in the highest production of beta-galactosidase. Further, agitation at 100 rpm or more was found to enhance both the growth and production of beta-galactosidase. Fermentation conducted in a jar fermenter having the pH of the culture medium, the cultivation temperature, and the agitation speed controlled at 6.5, 37 degrees C, and 100 rpm, respectively, a maximum beta-galactosidase activity of 36.7 U/ml and a maximum transgalactosylation activity of 0.49 U/ml was achieved in 10 h of fermentation. There are ca 2.0 and 12.3 fold greater than the reported maximum beta-galactosidase and transgalactosylation activity, respectively, produced by B. longum CCRC 15708 in a flask culture system.


Asunto(s)
Bifidobacterium/enzimología , Bifidobacterium/crecimiento & desarrollo , Medios de Cultivo/química , Fermentación , Microbiología de Alimentos , beta-Galactosidasa/biosíntesis , Recuento de Colonia Microbiana , Concentración de Iones de Hidrógeno , Probióticos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...