Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36833757

RESUMEN

This paper models and mitigates the secondary crash (SC) risk for serial tunnels on the freeway which is incurred by traffic turbulence after primary crash (PC) occurrence and location-heterogeneous lighting conditions along serial tunnels. A traffic conflict approach is developed where SC risk is quantified using a surrogate safety measure based on the simulated vehicle trajectories after PC occurs from a lighting-related microscopic traffic model with inter-lane dependency. Numerical examples are presented to validate the model, illustrate SC risk pattern over time, and evaluate the countermeasures for SC, including adaptive tunnel lighting control (ATLC) and advanced speed and lane-changing guidance (ASLG) for connected vehicles (CVs). The results demonstrate that the tail of the stretching queue on the PC occurrence lane, the adjacent lane of the PC-incurred queue, and areas near tunnel portals are high-risk locations. In serial tunnels, creating a good lighting condition for drivers is more effective than advanced warnings in CVs to mitigate SC risk. Combined ATLC and ASLG is promising since ASLG informs CVs of an immediate response to traffic turbulence on the lane where PC occurs and ATLC alleviates SC risks on adjacent lanes via smoothing the lighting condition variations and reducing inter-lane dependency.


Asunto(s)
Conducción de Automóvil , Accidentes de Tránsito , Iluminación
2.
Artículo en Inglés | MEDLINE | ID: mdl-36613210

RESUMEN

Millimeter-wave (MMW) radar is essential in roadside traffic perception scenarios and traffic safety control. For traffic risk assessment and early warning systems, MMW radar provides real-time position and velocity measurements as a crucial source of dynamic risk information. However, due to MMW radar's measuring principle and hardware limitations, vehicle positioning errors are unavoidable, potentially causing misperception of the vehicle motion and interaction behavior. This paper analyzes the factors influencing the MMW radar positioning accuracy that are of major concern in the application of transportation systems. An analysis of the radar measuring principle and the distributions of the radar point cloud on the vehicle body under different scenarios are provided to determine the causes of the positioning error. Qualitative analyses of the radar positioning accuracy regarding radar installation height, radar sampling frequency, vehicle location, posture, and size are performed. The analyses are verified through simulated experiments. Based on the results, a general guideline for radar data processing in traffic risk assessment and early warning systems is proposed.


Asunto(s)
Algoritmos , Radar , Postura , Movimiento (Física) , Percepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA