Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Sci Rep ; 14(1): 9912, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688987

RESUMEN

Extracorporeal cardiopulmonary resuscitation (ECPR) is increasingly performed as an adjunct to conventional cardiopulmonary resuscitation (CCPR) for refractory out-of-hospital cardiac arrest (OHCA). However, the specific benefits of ECPR concerning survival with favorable neurological outcomes remain uncertain. This study aimed to investigate the potential advantages of ECPR in the management of refractory OHCA. We conducted a retrospective cohort study involved OHCA patients between January 2016 and May 2021. Patients were categorized into ECPR or CCPR groups. The primary endpoint assessed was survival with favorable neurological outcomes, and the secondary outcome was survival rate. Multivariate logistic regression analyses, with and without 1:2 propensity score matching, were employed to assess ECPR's effect. In total, 1193 patients were included: 85underwent ECPR, and 1108 received CCPR. Compared to the CCPR group, the ECPR group exhibited notably higher survival rate (29.4% vs. 2.4%; p < 0.001). The ECPR group also exhibited a higher proportion of survival with favorable neurological outcome than CCPR group (17.6% vs. 0.7%; p < 0.001). Multivariate logistic regression analysis demonstrated that ECPR correlated with increased odds of survival with favorable neurological outcome (adjusted odds ratio: 13.57; 95% confidence interval (CI) 4.60-40.06). Following propensity score matching, the ECPR group showed significantly elevated odds of survival with favorable neurological outcomes (adjusted odds ratio: 13.31; 95% CI 1.61-109.9). This study demonstrated that in comparison to CCPR, ECPR may provide survival benefit and increase the odds of favorable neurological outcomes in selected OHCA patients.


Asunto(s)
Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea , Paro Cardíaco Extrahospitalario , Puntaje de Propensión , Humanos , Paro Cardíaco Extrahospitalario/terapia , Paro Cardíaco Extrahospitalario/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Reanimación Cardiopulmonar/métodos , Oxigenación por Membrana Extracorpórea/métodos , Estudios Retrospectivos , Anciano , Resultado del Tratamiento , Tasa de Supervivencia
2.
Nat Commun ; 15(1): 2944, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580656

RESUMEN

Due to its unique intensity distribution, self-acceleration, and beam self-healing properties, Airy beam holds great potential for optical wireless communications in challenging channels, such as underwater environments. As a vital part of 6G wireless network, the Internet of Underwater Things requires high-stability, low-latency, and high-capacity underwater wireless optical communication (UWOC). Currently, the primary challenge of UWOC lies in the prevalent time-varying and complex channel characteristics. Conventional blue Gaussian beam-based systems face difficulties in underwater randomly perturbed links. In this work, we report a full-color circular auto-focusing Airy beams metasurface transmitter for reliable, large-capacity and long-distance UWOC links. The metasurface is designed to exhibits high polarization conversion efficiency over a wide band (440-640 nm), enabling an increased data transmission rate of 91% and reliable 4 K video transmission in wavelength division multiplexing (WDM) based UWOC data link. The successful application of this metasurface in challenging UWOC links establishes a foundation for underwater interconnection scenarios in 6G communication.

3.
Biochem Pharmacol ; 223: 116133, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494066

RESUMEN

Despite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells caused by HNF1A knockdown, thereby exacerbating the GBM progression. Correctively, our study has clarified the explicit mechanism by which HNF1A promotes GBM malignancy and provides a new therapeutic target for further clinical application.


Asunto(s)
Glioblastoma , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Ratones Desnudos , Proliferación Celular , Línea Celular Tumoral , Transducción de Señal , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
Opt Express ; 32(2): 2561-2573, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297782

RESUMEN

With the advent of the sixth-generation mobile communication standard (6 G), the visible light communication (VLC) technology based on wavelength division multiplexing (WDM) technology can effectively solve the problem of shortage of spectrum resources and insufficient channel capacity. This paper introduces one of our technical achievements, namely the construction of a near-real-time visible light laser communication (VLLC) system based on WDM, which includes a self-designed 10-λ fully-packaged visible light laser emission module, 1 m multimode fiber - 0.175 m free space - 1 m multimode fiber optical transmission link, and receiver array. In the transmitter system, we adopt adaptive discrete multitone (DMT) modulation technique combined with Quadrature Amplitude Modulation (QAM) modulation scheme to obtain maximum spectral efficiency (SE). In the receiving system, we utilize the sparse-structured reservoir computing post-equalization algorithm to achieve superior equalization performance on the basis of the traditional post-equalization algorithm. The experimental results indicate that this quasi-real-time communication system has achieved a signal transmission rate of 113.175Gbps. To the best of our knowledge, this work has set a record in the field of high-speed visible light laser communication. Therefore, the laser communication system constructed by this work, with its flexibility in deployment and high-speed performance, demonstrates the significant potential application of visible light laser communication in data center interconnection and high-speed indoor access networks.

5.
ACS Nano ; 18(5): 4424-4431, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38276787

RESUMEN

Logic operation serves as the foundation and core element of computing networks; it will bring huge vitality to advanced information processing with its adaptation in the optical domain. As fundamental logic operations, AND and exclusive OR (XOR) operations serve a multitude of purposes, such as their ability to cooperate in enabling image processing and interpretation. Here, we propose and experimentally demonstrate a wavelength multiplexed AND and XOR function based on metasurfaces. By combining two cosine gratings with distinct frequencies and an initial phase difference of π/2, we extract the similarities and differences between two input images simultaneously by illuminating them with 445 and 633 nm wavelengths. Additionally, we explore its potential in information encryption, where overall security is enhanced by distributing distinct parts of initial information and encoded keys to different receivers. This design possesses the benefits of convenient mode switching and high-quality imaging, facilitating advanced applications in pattern recognition, machine vision, medical diagnosis, etc.

6.
Nat Mater ; 23(1): 71-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919349

RESUMEN

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 µm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 10-3 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

7.
Opt Express ; 31(25): 41546-41555, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087550

RESUMEN

We experimentally demonstrate a 214.7 Tbit/s generalized mutual information (GMI) estimated throughput by ultra-wideband wavelength division multiplexing (WDM) transmission in standard single-mode fiber (SSMF). With 50-GHz grid, 396 transmission channels are used to deliver 49 GBaud probabilistically constellation-shaped (PCS) 256 quadrature amplitude modulation (QAM) and PCS-64QAM signals. Silicon photonic integrated transceiver is employed to complete electro-optic and optic-electro conversion of the modulated signals. S, C, and L-band rare-earth-doped amplifiers enable the 19.8 THz bandwidth WDM transmission without the assistance of distributed Raman amplification. The measured data rate shows great potential for Silicon photonic devices deployed in ultra-wideband WDM transmission.

9.
Nat Commun ; 14(1): 6855, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891172

RESUMEN

Highly reflective surfaces are notorious in the field of depth sensing and three-dimensional (3D) imaging because they can cause severe errors in perception of the depth. Despite recent progress in addressing this challenge, there are still no robust and error-free solutions. Here, we devise a polarization structured light 3D sensor for solving these problems, in which high-contrast-grating (HCG) vertical-cavity surface-emitting lasers (VCSELs) are used to exploit the polarization property. We demonstrate accurate depth measurements of the reflective surfaces and objects behind them in various imaging situations. In addition, the absolute error and effective measurement range are measured to prove the applicability for a wide range of 3D applications. Our work innovatively combines polarization and depth information, opening the way for fully understanding and applying polarization properties in the 3D domain.

10.
Opt Express ; 31(20): 33355-33368, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859118

RESUMEN

We propose a two-stage equalization based on a simplified Kalman filter, which is used to solve the rapid rotation of the state of polarization (RSOP) that is caused by lightning strikes on optical cables and the extra inter symbol interference (ISI) introduced in the system. By analyzing the special expression of matrix coefficient in the Kalman filter under polarization demultiplexing, the simplified idea of a Kalman filter is provided, and its updating process is transformed into a kind of multiple-input-multiple-output (MIMO) structure algorithm. At the same time, the second stage finite impulse response filter is used to solve the ISI that is difficult to be solved by a Kalman filter. The performance of the proposed algorithm was tested in a coherent system of 28Gbaud PDM-QPSK/16QAM. The results confirm that on the basis of lower complexity than a Kalman filter, the proposed algorithm reduces its complexity by more than 30% compared to traditional MIMO equalization algorithm under the premise of linear operation, and which also can handle RSOP of 20 Mrad/s. When the system suffers from the extra ISI due to the limited device bandwidth, the optical signal to noise ratio of the proposed algorithm is about 4 dB lower than the Kalman filter at the same bit error rate.

11.
Sci Adv ; 9(42): eadi5339, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862416

RESUMEN

Silicon modulators are key components to support the dense integration of electro-optic functional elements for various applications. Despite numerous advances in promoting the modulation speed, a bandwidth ceiling emerges in practices and becomes an obstacle toward Tbps-level throughput on a single chip. Here, we demonstrate a compact pure silicon modulator that shatters present bandwidth ceiling to 110 gigahertz. The proposed modulator is built on a cascade corrugated waveguide architecture, which gives rise to a slow-light effect. By comprehensively balancing a series of merits, the modulators can benefit from the slow light for better efficiency and compact size while remaining sufficiently high bandwidth. Consequently, we realize a 110-gigahertz modulator with 124-micrometer length, enabling 112 gigabits per second on-off keying operation. Our work proves that silicon modulators with 110 gigahertz are feasible, thus shedding light on its potentials in ultrahigh bandwidth applications such as optical interconnection and photonic machine learning.

12.
Healthcare (Basel) ; 11(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628444

RESUMEN

BACKGROUND: Dual antiplatelet therapy (DAPT) is a standard treatment option for acute myocardial infarction (AMI). The difference between the efficacy of ticagrelor and clopidogrel in the emergency department (ED) before percutaneous coronary intervention (PCI) remains unknown. The present study compared the in-hospital major adverse cardiovascular event (MACE) rates between patients with AMI treated with clopidogrel and those treated with ticagrelor in the ED before PCI. METHODS: We retrospectively collected the data of patients diagnosed as having AMI in the ED. Patients were only included if they had successfully received complete DAPT with aspirin and ticagrelor/clopidogrel in the ED and had undergone PCI. The patients were divided into two groups according to their DAPT regimen. The primary outcome was the rate of in-hospital MACEs. The secondary outcomes included an unexpected return to the ED within 72 h, readmission within 14 d, and revascularization. RESULTS: A total of 1836 patients were enrolled. Patients in the ticagrelor group had a lower in-hospital MACE rate (3.01% versus 7.51%, p < 0.001) and in-hospital mortality rate (2.15% versus 5.70%, p < 0.001) than those in the clopidogrel group. Multivariate logistic regression analysis revealed ticagrelor was independently associated with a lower risk of in-hospital MACEs (odds ratio [OR]: 0.53, 95% CI: 0.32-0.88, p = 0.013). After propensity score matching, the risk of in-hospital MACEs remained significantly lower in the ticagrelor group (OR 0.42, 95% CI: 0.21-0.85, p = 0.016). CONCLUSION: DAPT with ticagrelor and aspirin in the ED before PCI is associated with a lower in-hospital MACE rate among patients with AMI.

13.
Nat Commun ; 14(1): 4590, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524697

RESUMEN

Optical chaos is vital for various applications such as private communication, encryption, anti-interference sensing, and reinforcement learning. Chaotic microcombs have emerged as promising sources for generating massive optical chaos. However, their inter-channel correlation behavior remains elusive, limiting their potential for on-chip parallel chaotic systems with high throughput. In this study, we present massively parallel chaos based on chaotic microcombs and high-nonlinearity AlGaAsOI platforms. We demonstrate the feasibility of generating parallel chaotic signals with inter-channel correlation <0.04 and a high random number generation rate of 3.84 Tbps. We further show the application of our approach by demonstrating a 15-channel integrated random bit generator with a 20 Gbps channel rate using silicon photonic chips. Additionally, we achieved a scalable decision-making accelerator for up to 256-armed bandit problems. Our work opens new possibilities for chaos-based information processing systems using integrated photonics, and potentially can revolutionize the current architecture of communication, sensing and computations.

14.
Opt Express ; 31(11): 17987-17998, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381518

RESUMEN

Based on the commercial silicon photonics (SiPh) process platform, a flat 3 dB bandwidth of 80 GHz germanium-silicon (Ge-Si) photodetector (PD) is experimentally demonstrated at a photocurrent of 0.8 mA. This outstanding bandwidth performance is achieved by using the gain peaking technique. It permits an 95% improvement in bandwidth without sacrificing responsivity and undesired effects. The peaked Ge-Si PD shows the external responsivity of 0.5 A/W and internal responsivity of 1.0 A/W at a wavelength of 1550 nm under -4 V bias voltage. The high-speed large signal reception capability of the peaked PD is comprehensively explored. Under the same transmitter state, the transmitter dispersion eye closure quaternary (TDECQ) penalties of the 60 and 90 Gbaud four-level pulse amplitude modulation (PAM-4) eye diagrams are about 2.33 and 2.76 dB, 1.68 and 2.45 dB for the un-peaked and peaked Ge-Si PD, respectively. When the reception speed increase to 100 and 120 Gbaud PAM-4, the TDECQ penalties are approximatively 2.53 and 3.99 dB. However, for the un-peaked PD, its TDECQ penalties cannot be calculated by oscilloscope. We also measure the bit error rate (BER) performances of the un-peaked and peaked Ge-Si PDs under different speed and optical power. For the peaked PD, the eye diagrams quality of 156 Gbit/s nonreturn-to-zero (NRZ), 145 Gbaud PAM-4, and 140 Gbaud eight-level pulse amplitude modulation (PAM-8) are as good as the 70 GHz Finisar PD. To the best of our knowledge, we report for the first-time a peaked Ge-Si PD operating at 420 Gbit/s per lane in an intensity modulation direct-detection (IM/DD) system. It might be also a potential solution to support the 800 G coherent optical receivers.

15.
Adv Mater ; 35(29): e2301505, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37203240

RESUMEN

Current optical differentiators are generally limited to realizing a single differential function once fabricated. Herein, a minimalist strategy in designing multiplexed differentiators (1st - and 2nd -order differentiations), implemented with a Malus metasurface consisting of single-sized nanostructures is proposed, thus improving the functionality of optical computing devices without the cost of complex design and nanofabrication. It is found that the proposed meta-differentiator exhibits excellent differential-computation performance and can be used for simultaneous outline detection and edge positioning of objects, corresponding to the functions of the 1st - and 2nd -order differentiations respectively. Experiments with biological specimens showcase that boundaries of biological tissues can not only be identified, but also the edge information for realizing high-precision edge positioning is highlighted. The study provides a paradigm in designing all-optical multiplexed computing meta-devices, and initiates tri-mode surface morphology observation by combining meta-differentiator with optical microscopes, which can find their applications in advanced biological imaging, large-scale defect detection, and high-speed pattern recognition, etc.

16.
Light Sci Appl ; 12(1): 94, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37069138
17.
Adv Mater ; 35(28): e2300344, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37031351

RESUMEN

Efficient control of integrated light sources is crucial to advancing practical applications of nanophotonics. Despite the success of microlasers, their sophisticated nanostructures are not applicable in nanolasers. The situation for bottom-up-synthesized nanolasers becomes more challenging due to the constraints of fixed cavity shapes and fragile material stability. Here, the physics of exceptional points (EPs) is employed, and a strategy is demonstrated to precisely tune the lasing actions in lead halide perovskite nanorods. By placing a nanoparticle to the boundary of a square nanocavity, it is shown that EPs regularly and controllably emerge as a function of the nanoparticle position. Consequently, both the internal lasing actions and their far-field radiation can be completely reversed with a tiny displacement of <100 nm. The new strategy for controlling lasing actions in nanocavities is confirmed with numerical simulations and lasing experiments. This research can also bring new avenues for ultrasensitive position sensing.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanotubos , Compuestos de Calcio
18.
Nano Lett ; 23(8): 3418-3425, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042745

RESUMEN

Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.

19.
Nat Commun ; 14(1): 1938, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024508

RESUMEN

Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistance of an all-optical excitation mechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% to MIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).

20.
Opt Express ; 31(3): 4129-4139, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785388

RESUMEN

By using the flip-chip bonding technology, a high performances 3D-integrated silicon photonics receiver is demonstrated. The receiver consists of a high-speed germanium-silicon (Ge-Si) photodetector (PD) and a commercial linear transimpedance amplifiers (TIA). The overall 3 dB bandwidth of the receiver is around 38 GHz with appropriate gain. Based on this 3D-integrated receiver, the 56, 64, 90, 100 Gbit/s non-return-to-zero (NRZ) and 112, 128 Gbit/s four-level pulse amplitude (PAM-4) modulation clear openings of eye diagrams are experimentally obtained. The sensitivities of -10, -5.2 dBm and -6.6, -2.7 dBm were obtained for 112 Gbit/s NRZ and 160 Gbit/s PAM-4 at hard-decision forward err correction (HD-FEC,3.8 × 10-3) and KP4 forward err correction (KP4-FEC,2 × 10-4) threshold, respectively. Additionally, the lowest power consumption of this receiver is about 1.2 pJ/bit, which implies its huge potential for short-reach data center applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...