Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Polym Sci ; 140(5): e53406, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37034442

RESUMEN

During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 µm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.

2.
Sci Total Environ ; 770: 145364, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736373

RESUMEN

The nanosized iron oxides-based adsorbent has been widely used to alleviate water eutrophication. However, it is challenging to industrialize the application of nanosized iron oxides-based adsorbent due to their poor stability, difficult separation and recovery. Herein, hematite and tetra-n-butylammonium bromide incorporated polyacrylonitrile (PAN/Fe2O3/TBAB) composite nanofibers with a controlled diameter (i.e., 66 to 305 nm) and composition were systematically synthesized as an adsorbent for phosphate removal from water using surfactant-mediated electrospinning. During the electrospinning process, polar TBAB surfactant enhanced the migration of Fe2O3 nanoparticles toward the surface of nanofibers resulting in Fe2O3 nanoparticles/TBAB surface enriched nanofibers. The synthesized nanofiber membranes were used for phosphate removal, and their adsorption kinetics, adsorption mechanism, and reusability were investigated. Data showed that adsorption kinetic followed the pseudo-second-order model whereas the adsorption mechanism follows the Langmuir model. The phosphate removal was mainly derived from the chemisorption of surface-enriched α-Fe2O3 nanoparticles at acidic and circumneutral pH values, with a small contribution from anion exchange at TBAB sites. The maximum phosphate removal capacity was approx. 8.76 mg/g (i.e., 23.1 mg/g, P/active materials) at pH 3. Additionally, the synthesized nanofiber membrane also shows excellent reusability.

3.
Front Chem ; 9: 629329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681147

RESUMEN

Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.

4.
Front Chem ; 8: 785, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984258

RESUMEN

Selenium, depending on its crystal structure, can exhibit various properties and, as a result, be used in a wide range of applications. However, its exploitation has been limited due to the lack of understanding of its complex growth mechanism. In this work, template-free electrodeposition has been utilized for the first time to synthesize hexagonal-selenium (t-Se) microstructures of various morphologies at 80°C. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) revealed 5 reduction peaks, which were correlated with possible electrochemical or chemical reaction related to the formation of selenium. Potentiostatic electrodeposition using 100 mM SeO2 showed selenium nanorods formed at-0.389 V then increased in diameter up to -0.490 V, while more negative potentials (-0.594 V) induced formation of sub-micron wires with average diameter of 708 ± 116 nm. Submicron tubes of average diameter 744 ± 130 nm were deposited at -0.696 V. Finally, a mixture of tubes, wires, and particles was observed at more cathodic potential due to a combination of nucleation, growth, dissolution of structures as well as formation of amorphous selenium via comproportionation reaction. Texture coefficient as a function of applied potential described the preferred orientation of the sub-microstructures changed from (100) direction to more randomly oriented as more cathodic potentials were applied. Lower selenium precursor concentration lead to formation of nanowires only with smaller average diameters (124 ± 42 nm using 1 mM, 153 ± 46 nm using 10 mM SeO2 at -0.389 V). Time-dependent electrodeposition using 100 mM selenium precursor at -0.696 V explained selenium was formed first as amorphous, on top of which nucleation continued to form rods and wires, followed by preferential dissolution of the wire core to form tubes.

5.
Front Chem ; 8: 620153, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33644003

RESUMEN

Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.

6.
J Biotechnol ; 263: 30-35, 2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29029999

RESUMEN

Enzymatic fuel cells have received considerable attention because of their potential for direct conversion of abundant raw materials such as cellulose to electricity. The use of multi-enzyme cascades is particularly attractive as they offer the possibility of achieving a series of complex reactions at higher efficiencies. Here we reported the use of a DNA-guided approach to assemble a five-component enzyme cascade for direct conversion of cellulose to gluconic acid and H2O2. Site-specific co-localization of ß-glucosidase and glucose oxidase resulted in over 11-fold improvement in H2O2 production from cellobiose, highlighting the benefit of substrate channeling. Although a more modest 1.5-fold improvement in H2O2 production was observed using a five-enzyme cascade, due to H2O2 inhibition on enzyme activity, these results demonstrated the possibility to enhance the production of gluconic acid and H2O2 directly from cellulose by DNA-guided enzyme assembly.


Asunto(s)
Celulosa/metabolismo , ADN/genética , Gluconatos/metabolismo , Glicósido Hidrolasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Recombinantes/metabolismo , Celulosomas/enzimología , Celulosomas/genética , ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Glicósido Hidrolasas/genética , Proteínas Recombinantes/genética
7.
Nature ; 530(7588): 71-6, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26779949

RESUMEN

Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.


Asunto(s)
Implantes Absorbibles , Encéfalo/metabolismo , Electrónica/instrumentación , Monitoreo Fisiológico/instrumentación , Prótesis e Implantes , Silicio , Implantes Absorbibles/efectos adversos , Administración Cutánea , Animales , Temperatura Corporal , Encéfalo/cirugía , Diseño de Equipo , Hidrólisis , Masculino , Monitoreo Fisiológico/efectos adversos , Especificidad de Órganos , Presión , Prótesis e Implantes/efectos adversos , Ratas , Ratas Endogámicas Lew , Telemetría/instrumentación , Tecnología Inalámbrica/instrumentación
8.
ACS Nano ; 8(6): 5843-51, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24684516

RESUMEN

Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.


Asunto(s)
Materiales Biocompatibles/química , Electroquímica/métodos , Nanopartículas del Metal/química , Nanoestructuras/química , Silicio/química , Línea Celular Tumoral , Cristalización , Dimetilpolisiloxanos/química , Electrónica , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Iones , Cinética , Ensayo de Materiales , Membranas Artificiales , Microscopía , Nanotecnología/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...