Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Stem Cells ; 15(11): 1017-1034, 2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38058959

RESUMEN

BACKGROUND: Ferroptosis can induce low retention and engraftment after mesenchymal stem cell (MSC) delivery, which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension (PAH) therapy. Interestingly, the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway may contribute to mediating ferroptosis. However, the influence of the CSE/H2S pathway on ferroptosis in human umbilical cord MSCs (HUCMSCs) remains unclear. AIM: To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H2S pathway-mediated ferroptosis, and to investigate the functions of the CSE/H2S pathway in ferroptosis in HUCMSCs and the underlying mechanisms. METHODS: Erastin and ferrostatin-1 (Fer-1) were used to induce and inhibit ferroptosis, respectively. HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE. A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions, and pulmonary pressure and vascular remodelling were measured. The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging. Cell viability, iron accumulation, reactive oxygen species production, cystine uptake, and lipid peroxidation in HUCMSCs were tested. Ferroptosis-related proteins and S-sulfhydrated Kelch-like ECH-associating protein 1 (Keap1) were detected by western blot analysis. RESULTS: In vivo, CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxia-induced PAH. In vitro, CSE overexpression improved H2S production and ferroptosis-related indexes, such as cell viability, iron level, reactive oxygen species production, cystine uptake, lipid peroxidation, mitochondrial membrane density, and ferroptosis-related protein expression, in erastin-treated HUCMSCs. In contrast, in vivo, CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice. In vitro, CSE inhibition decreased H2S levels and restored ferroptosis in Fer-1-treated HUCMSCs. Interestingly, upregulation of the CSE/H2S pathway induced Keap1 S-sulfhydration, which contributed to the inhibition of ferroptosis. CONCLUSION: Regulation of the CSE/H2S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH. Moreover, the protective effect of the CSE/H2S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling. The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.

2.
World J Stem Cells ; 15(3): 90-104, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37007455

RESUMEN

BACKGROUND: The low survival rate of mesenchymal stem cells (MSCs) caused by anoikis, a form of apoptosis, limits the therapeutic efficacy of MSCs. As a proapoptotic molecule, mammalian Ste20-like kinase 1 (Mst1) can increase the production of reactive oxygen species (ROS), thereby promoting anoikis. Recently, we found that Mst1 inhibition could protect mouse bone marrow MSCs (mBMSCs) from H2O2-induced cell apoptosis by inducing autophagy and reducing ROS production. However, the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear. AIM: To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs. METHODS: Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA (shRNA) adenovirus transfection. Integrin (ITGs) were tested by flow cytometry. Autophagy and ITGα5ß1 were inhibited using 3-methyladenine and small interfering RNA, respectively. The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays. The levels of the anoikis-related proteins ITGα5, ITGß1, and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I, Beclin1 and p62 were detected by Western blotting. RESULTS: In isolated mBMSCs, Mst1 expression was upregulated, and Mst1 inhibition significantly reduced cell apoptosis, induced autophagy and decreased ROS levels. Mechanistically, we found that Mst1 inhibition could upregulate ITGα5 and ITGß1 expression but not ITGα4, ITGαv, or ITGß3 expression. Moreover, autophagy induced by upregulated ITGα5ß1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis. CONCLUSION: Mst1 inhibition ameliorated autophagy formation, increased ITGα5ß1 expression, and decreased the excessive production of ROS, thereby reducing cell apoptosis in isolated mBMSCs. Based on these results, Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.

3.
Nanomicro Lett ; 13(1): 162, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34338928

RESUMEN

HIGHLIGHTS: The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels-Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.

5.
Stem Cells Int ; 2019: 6768571, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781243

RESUMEN

BACKGROUND/OBJECTIVES: Carbonic anhydrase 1 (CA1)/kininogen and selenoprotein W (SelW)/14-3-3η signal transduction orchestrate oxidative stress, which can also be regulated by nitric oxide (NO). The mutated caveolin-1 (Cav-1F92A) gene may enhance NO production. This study explored the effect of Cav-1F92A-modified rat bone marrow mesenchymal stem cells (rBMSC/Cav-1F92A) on oxidative stress regulation through CA1/kininogen and SelW/14-3-3η signal transduction in a rat model of monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). METHOD: PAH was induced in rats through the subcutaneous injection of MCT. Next, rBMSC/Vector (negative control), rBMSC/Cav-1, rBMSC/Cav-1F92A, or rBMSC/Cav-1F92A+L-NAME were administered to the rats. Changes in pulmonary hemodynamic and vascular morphometry and oxidative stress levels were evaluated. CA1/kininogen and SelW/14-3-3η signal transduction, endothelial nitric oxide synthase (eNOS) dimerization, and eNOS/NO/sGC/cGMP pathway changes were determined through real-time polymerase chain reaction, Western blot, or immunohistochemical analyses. RESULTS: In MCT-induced PAH rats, rBMSC/Cav-1F92A treatment reduced right ventricular systolic pressure, vascular stenosis, and oxidative stress; downregulated CA1/kininogen signal transduction; upregulated SelW/14-3-3η signal transduction; and reactivated the NO pathway. CONCLUSIONS: In a rat model of MCT-induced PAH, rBMSC/Cav-1F92A reduced oxidative stress by regulating CA1/kininogen and SelW/14-3-3η signal transduction.

6.
Sci Rep ; 8(1): 4772, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555950

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the elderly. Zinc (Zn) ion interacts with the pathogenic hallmark, amyloid-ß (Aß), and is enriched in senile plaques in brain of AD patients. To understand Zn-chelated Aß (ZnAß) species, here we systematically characterized ZnAß aggregates by incubating equimolar Aß with Zn. We found ZnAß40 and ZnAß42 both form spherical oligomers with a diameter of ~12-14 nm composed of reduced ß-sheet content. Oligomer assembly examined by analytical ultracentrifugation, hydrophobic exposure by BisANS spectra, and immunoreactivity of ZnAß and Aß derived diffusible ligands (ADDLs) are distinct. The site-specific 13C labeled solid-state NMR spectra showed that ZnAß40 adopts ß-sheet structure as in Aß40 fibrils. Interestingly, removal of Zn by EDTA rapidly shifted the equilibrium back to fibrillization pathway with a faster kinetics. Moreover, ZnAß oligomers have stronger toxicity than ADDLs by cell viability and cytotoxicity assays. The ex vivo study showed that ZnAß oligomers potently inhibited hippocampal LTP in the wild-type C57BL/6JNarl mice. Finally, we demonstrated that ZnAß oligomers stimulate hippocampal microglia activation in an acute Aß-injected model. Overall, our study demonstrates that ZnAß rapidly form toxic and distinct off-pathway oligomers. The finding provides a potential target for AD therapeutic development.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Multimerización de Proteína/efectos de los fármacos , Zinc/toxicidad , Animales , Difusión , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Estructura Secundaria de Proteína/efectos de los fármacos
7.
Biomed Pharmacother ; 99: 1-8, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29324307

RESUMEN

BACKGROUND: Cell based therapy has been heralded as a novel, promising therapeutic strategy for cardiovascular diseases including pulmonary arterial hypertension (PAH). However, the low survival rate after transplantation due to cell death via anoikis is a major obstacle in stem cell therapy. Cells adhesion via Integrin alpha5beta1 (ITGA5B1) has a tendency to exert higher maximum forces. The present study aimed to evaluate the potential protective effect of ITGA5B1 on rat bone marrow mesenchymal stem cells (rBMSCs) from anoikis. METHODS: Mononuclear cells were isolated by density gradient centrifugation with Ficoll, and rBMSCs cell surface markers were evaluated by flow cytometry. Osteogenic and adipocyte differentiation was determined by Alizarin Red S and Oil Red O staining respectively. The expression of Integrin A5 (ITGA5), Integrin B1 (ITGB1), eNOS and actived-caspase-3 mRNA or protein was confirmed by qPCR and western-blot. Cell adhesion, cell viability, anoikis and the migration of rBMSCs were also evaluated. Nitric oxide (NO) production was detected by the greiss assay. RESULTS: Co-infected with Integrin A5 and B1 lentivirus to rBMSCs increased ITGA5 and ITGB1 mRNA and protein expression. ITGA5B1 enhanced the cell adhesion, cell viability, cell migration and NO production but reduced the cell anoikis in rBMSCs/ITGA5B1 groups. CONCLUSION: Transduction of rat rBMSCs with ITGA5B1 lentivirus could prevent cell anoikis and increase NO production.


Asunto(s)
Anoicis , Integrina alfa5beta1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Óxido Nítrico/biosíntesis , Animales , Adhesión Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/citología , Ratas , Transducción Genética , Cicatrización de Heridas
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1255-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30052358

RESUMEN

Laser micromachining has proven to be a useful tool for precision processing of semiconductors. For Silicon Carbide (SiC) single crystals, ablation with ultraviolet wavelength laser could lead to the maximum absorption efficiency of incident energy. In this paper, laser ablations were performed on 6H-SiC single crystals through a 355 nm solid state laser. Different confining media were also employed to find the optimal processing condition. The surface of SiC after laser ablation was characterized by Raman spectroscopy. Amorphous silicon and nanocrystalline graphite were found to be the main compositions left. For SiC wafers ablation in air, the amorphous silicon exhibited mainly around rather than inside the ablated crater. However, the amorphous silicon showed opposite spatial distribution features for samples processing under liquid. Through analysis of the compositions left on the ablated surface, the ablation mechanism was investigated from another point of view. For liquid confined laser processing,previous studies mainly concentrate on the thickness and viscosity of the liquids, little information has been done on the reducibility of liquids. To investigate the influence of liquid reducibility, the surface morphology and oxygen content of ablation under different confining media were checked by confocal laser scanning microscopy and energy dispersive spectroscopy. Results showed that the reducibility of confining liquid also played a vital role in the ablation process under liquid. Utilizing liquids with deoxidizing ability as confining media will result in a remarkable reduction of surface oxygen content and a more regular morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...