Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 7(3): 036008, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22549014

RESUMEN

Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the 'rearing stage,' inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the 'rising stage,' maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed.


Asunto(s)
Biomimética/instrumentación , Cucarachas/fisiología , Extremidades/fisiología , Marcha/fisiología , Locomoción/fisiología , Modelos Biológicos , Robótica/instrumentación , Animales , Materiales Biomiméticos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
2.
Rev Sci Instrum ; 83(4): 045116, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22559585

RESUMEN

We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C.


Asunto(s)
Electricidad , Fenómenos Geológicos , Microbiología/instrumentación , Microtecnología/instrumentación , Temperatura , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...