Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 42(18): 3564-3571, 2017 Sep.
Artículo en Chino | MEDLINE | ID: mdl-29218943

RESUMEN

This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 µmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 µmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that germacrone may improve the effect on HUVECs damaged by H2O2-induced oxidative stress by resisting oxidation and inhibiting cell apoptosis.


Asunto(s)
Apoptosis , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estrés Oxidativo , Sesquiterpenos de Germacrano/farmacología , Células Cultivadas , Humanos , Peróxido de Hidrógeno
2.
Diabetes ; 64(6): 2069-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25576055

RESUMEN

Leptin, an anorexigenic hormone in the hypothalamus, suppresses food intake and increases energy expenditure. Failure to respond to leptin will lead to obesity. Here, we discovered that nuclear receptor Nur77 expression is lower in the hypothalamus of obese mice compared with normal mice. Injection of leptin results in significant reduction in body weight in wild-type mice but not in Nur77 knockout (KO) littermates or mice with specific Nur77 knockdown in the hypothalamus. Hypothalamic Nur77 not only participates in leptin central control of food intake but also expands leptin's reach to liver and adipose tissues to regulate lipid metabolism. Nur77 facilitates signal transducer and activator of transcription 3 (STAT3) acetylation by recruiting acetylase p300 and disassociating deacetylase histone deacetylase 1 (HDAC1) to enhance the transcriptional activity of STAT3 and consequently modulates the expression of downstream gene Pomc in the hypothalamus. Nur77 deficiency compromises response to leptin in mice fed a high-fat diet. Severe leptin resistance in Nur77 KO mice with increased appetite, lower energy expenditure, and hyperleptinemia contributes to aging-induced obesity. Our study opens a new avenue for regulating metabolism with Nur77 as the positive modulator in the leptin-driven antiobesity in the hypothalamus.


Asunto(s)
Hipotálamo/metabolismo , Leptina/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Acetilación/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Humanos , Hipotálamo/efectos de los fármacos , Inmunoprecipitación , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA