Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Small ; : e2402310, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726774

RESUMEN

Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.

2.
Front Pharmacol ; 15: 1360972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650625

RESUMEN

Ethnopharmacological relevance: As a representative classical prescription, Sijunzi decoction has powerful therapeutic effects on spleen-stomach qi insufficiency. Ulcerative colitis (UC) is a chronic, diffuse, and non-specifically inflammatory disorder, the etiology of which still remains unclear. In the traditional Chinese medicine (TCM) perspective, splenic asthenia is the primary cause of UC. Based on this, Sijunzi decoction has been extensively used in TCM clinical practice to alleviate UC in recent years. However, the pharmacological mechanism of Sijunzi decoction in modern medicine is still not completely clear, which limits its clinical application. Aim of the study: The purpose of this study was to investigate the Sijunzi decoction's curative effect on acute UC mice and probe into its potential pharmacological mechanism. Materials and methods: The UC mouse model was set up by freely ingesting a 3% dextran sulfate sodium (DSS) solution. The relieving role of Sijunzi decoction on UC in mice was analyzed by evaluating the changes in clinical parameters, colon morphology, histopathology, inflammatory factor content, intestinal epithelial barrier protein expression level, and gut microbiota balance state. Finally, multivariate statistical analysis was conducted to elucidate the relationship between inflammatory factors, intestinal epithelial barrier proteins, and gut microbiota. Results: First, the research findings revealed that Sijunzi decoction could visibly ease the clinical manifestation of UC, lower the DAI score, and attenuate colonic damage. Moreover, Sijunzi decoction could also significantly inhibit IL-6, IL-1ß, and TNF-α while increasing occludin and ZO-1 expression levels. Subsequently, further studies showed that Sijunzi decoction could remodel gut microbiota homeostasis. Sijunzi decoction was beneficial in regulating the levels of Alistipes, Akkermansia, Lachnospiraceae_NK4A136_group, and other bacteria. Finally, multivariate statistical analysis demonstrated that key gut microbes were closely associated with inflammatory factors and intestinal epithelial barrier proteins. Conclusion: Sijunzi decoction can significantly prevent and treat UC. Its mechanism is strongly associated with the improvement of inflammation and intestinal epithelial barrier damage by regulating the gut microbiota.

3.
ACS Appl Mater Interfaces ; 16(15): 19039-19047, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573751

RESUMEN

Wide-bandgap semitransparent perovskite photovoltaics are emerging as one of the ideal candidates for building-integrated photovoltaics (BIPV). However, surface defects in inorganic CsPbBr3 perovskite prepared by vapor deposition severely limit the optoelectronic performance of perovskite solar cells. To address this issue, a strategy of doping a trace amount of KBr into perovskite by vapor deposition is adopted, effectively improving the quality of the film, reducing surface defect concentration, and enhancing the transportation and extraction of charge carriers. Simultaneously, fully physical vapor deposition technology is employed to fabricate perovskite solar cells with an average visible light transmittance of 44%. These devices exhibited an ultrahigh open-circuit voltage of 1.55 V and a superior power conversion efficiency (PCE) of 7.28%, demonstrating excellent moisture and heat resistance. Moreover, the corresponding 5 cm × 5 cm modules achieve a PCE of 5.35% with great thermal insulation capability. This work provides an approach for fabricating highly efficient all-inorganic perovskite solar cells with high average visible light transmittance, demonstrating new insights into their application in building-integrated photovoltaics.

4.
Life Sci ; 347: 122650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631669

RESUMEN

AIMS: As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS: We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS: According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE: Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.


Asunto(s)
Encéfalo , Ferroptosis , Hígado , Estrés Oxidativo , Ferroptosis/fisiología , Humanos , Estrés Oxidativo/fisiología , Encéfalo/metabolismo , Hígado/metabolismo , Hígado/patología , Animales , Eje Cerebro-Intestino/fisiología , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo
5.
Adv Mater ; : e2400808, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687819

RESUMEN

Platinum (Pt) supported on high surface area carbon has been the most widely used electrocatalyst in proton exchange membrane fuel cell (PEMFC). However, conventional carbon supports are susceptible to corrosion at high potentials, leading to severe degradation of electrochemical performance. In this work, titanium carbonitride embedded in mesoporous carbon nanofibers (m-TiCN NFs) are reported as a promising alternative to address this issue. Benefiting from the interpenetrating conductive pathways inside the one-dimensional (1D) nanostructures and the embedded TiCN nanoparticles (NPs), m-TiCN NFs exhibit excellent stability at high potentials and interact strongly with Pt NPs. Subsequently, m-TiCN NFs-supported Pt NPs deliver remarkably enhanced oxygen reduction reaction (ORR) activity and durability, with negligible activity decay and less than 5% loss of electrochemical surface area(ECSA) after 50 000 cycles. Moreover, the fuel cell assembled by this catalyst delivers a maximum power density of 1.22 W cm-2 and merely 3% loss after 30 000 cycles of accelerated durability tests under U.S. Department of Energy (DOE) protocols. The improved ORR activity and durability are attributed to the superior corrosion resistance of the m-TiCN NF support and the strong interaction between Pt and m-TiCN NFs.

6.
Int Immunopharmacol ; 131: 111817, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38460299

RESUMEN

Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Adyuvantes Inmunológicos , Compuestos de Alumbre , Hidróxido de Aluminio , Malaria/prevención & control , Oligodesoxirribonucleótidos
7.
Dalton Trans ; 53(10): 4574-4579, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38349199

RESUMEN

Hydrazine-assisted electrochemical water splitting is an important avenue toward low cost and sustainable hydrogen production, which can significantly reduce the voltage of electrochemical water splitting. Herein, we took a simple approach to fabricate NiFeP nanosheet arrays on nickel foam (NiFeP/NF), which exhibit superior electrocatalytic activity for the hydrogen evolution reaction (HER) and the hydrazine oxidation reaction (HzOR). Our investigations revealed that the excellent electrocatalytic activity of NiFeP/NF mainly arises from the bimetallic synergistic effect, abundant electrocatalytically active sites facilitated by the porous nanosheet morphology, high intrinsic conductivity of NiFeP/NF and strong NiFeP-NF adhesion. We assembled a hydrazine-boosted electrochemical water splitting cell using NiFeP/NF as a bifunctional catalyst for both electrodes, and the overall hydrazine splitting (OHzS) exhibits a considerably low overpotential (100 mV at 10 mA cm-2), and is stable for 40 h continuous electrolysis in a 1 M KOH + 0.5 M N2H4 electrolyte. When it is applied to hydrogen production by seawater electrolysis, its catalytic activity shows strong tolerance. This work provides a promising approach for low cost, high-efficiency and stable hydrogen production based on hydrazine-assisted electrolytic seawater splitting for future applications.

8.
J Colloid Interface Sci ; 662: 333-341, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354560

RESUMEN

It is significant to tailor multifunctional electrode materials for storing sustainable energy in lithium-sulfur (Li-S) batteries and converting intermittent solar energy into H2, facilitated by electricity. In this context, COF-1@CNT obtained through interfacial interaction fulfilled both requisites via post-functionalization. Upon integrating COF-1@CNT with S as the cathode for Li-S batteries, the system exhibited an initial discharge capacity of 1360 mAh g-1. Subsequently, it maintained a sustained actual capacity even after undergoing 200 charge-discharge cycles at 0.5C. The performance improvement was attributed to the optimized conductivity due to the addition of carbon nanotubes (CNTs). Furthermore, the synergistic interaction between the nitrogen of COF-1 and lithium mitigated the shuttle effect in Li-S batteries. In the modified three-electrode electrolytic cell system, COF-1@CNT-Ru produced by COF-1@CNT with RuCl3 showed better electrochemical reactivity for photothermal-assisted hydrogen evolution reaction (HER). This effect was demonstrated by reducing the overpotential to 140 mV relative to the no-photothermal condition (180 mV) at a current density of 10 mA cm-2. This study marked the first simultaneous application of covalent organic frameworks (COFs) based materials in Li-S batteries and photothermal-assisted electrocatalysts. The modified electrocatalytic system held promise as a novel avenue for exploring solar thermal energy utilization.

9.
J Appl Toxicol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329145

RESUMEN

The accurate identification of chemicals with ocular toxicity is of paramount importance in health hazard assessment. In contemporary chemical toxicology, there is a growing emphasis on refining, reducing, and replacing animal testing in safety evaluations. Therefore, the development of robust computational tools is crucial for regulatory applications. The performance of predictive models is heavily reliant on the quality and quantity of data. In this investigation, we amalgamated the most extensive dataset (4901 compounds) sourced from governmental GHS-compliant databases and literature to develop binary classification models of chemical ocular toxicity. We employed 12 molecular representations in conjunction with six machine learning algorithms and two deep learning algorithms to create a series of binary classification models. The findings indicated that the deep learning method GCN outperformed the machine learning models in cross-validation, achieving an impressive AUC of 0.915. However, the top-performing machine learning model (RF-Descriptor) demonstrated excellent performance with an AUC of 0.869 on the test set and was therefore selected as the best model. To enhance model interpretability, we conducted the SHAP method and attention weights analysis. The two approaches offered visual depictions of the relevance of key descriptors and substructures in predicting ocular toxicity of chemicals. Thus, we successfully struck a delicate balance between data quality and model interpretability, rendering our model valuable for predicting and comprehending potential ocular-toxic compounds in the early stages of drug discovery.

10.
Disabil Rehabil Assist Technol ; : 1-13, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299880

RESUMEN

PURPOSE: Alzheimer's disease (AD) is a common and devastating neurological ailment that affects millions of the elderly worldwide. Therapeutic toys and games have emerged as potential non-pharmacological interventions for AD. However, despite a growing number of documents on the subject, research on the future direction of therapeutic toys and games for AD remains scarce. To address this gap, this study aims to (1) map the future trends of therapeutic toys and games for AD and (2) identify the categories and design characteristics. MATERIALS AND METHODS: Using a thematic review framework, a systematic literature search was conducted in two electronic databases (Scopus and WoS) using established criteria. Thematic analysis was done using ATLAS.ti 23 to identify prominent themes, patterns and trends. RESULTS: A total of 180 documents were found. Twenty-five articles met the inclusion criteria. A thematic review of these 25 articles identified 13 initial codes, which were been clustered into four themes: detection and evaluation; intervention; toy/game category; and design characteristics. The word "Cognitive" appears most frequently in documents according to word cloud. CONCLUSIONS: Therapeutic toys and games are used to detect and as an intervention for AD. Most of the current studies focused on specific cognitive functions. More research is needed about play therapy for neuropsychiatric symptoms. This thematic review also proposed a conceptual framework for designing toys and games tailored to the needs of the elderly with AD, offering valuable insights to future researchers focusing on this domain.


Most studies focused on cognitive function among Alzheimer's patients.More research is needed about the rehabilitation of neuropsychiatric symptoms among Alzheimer's patients.Games and toys have been evaluated as beneficial for detecting and as an intervention for Alzheimer's disease (AD). More research is needed about how to design games or toys tailored to the needs of the elderly with AD.

11.
RNA ; 30(3): 189-199, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164624

RESUMEN

Aptamers have emerged as research hotspots of the next generation due to excellent performance benefits and application potentials in pharmacology, medicine, and analytical chemistry. Despite the numerous aptamer investigations, the lack of comprehensive data integration has hindered the development of computational methods for aptamers and the reuse of aptamers. A public access database named AptaDB, derived from experimentally validated data manually collected from the literature, was hence developed, integrating comprehensive aptamer-related data, which include six key components: (i) experimentally validated aptamer-target interaction information, (ii) aptamer property information, (iii) structure information of aptamer, (iv) target information, (v) experimental activity information, and (vi) algorithmically calculated similar aptamers. AptaDB currently contains 1350 experimentally validated aptamer-target interactions, 1230 binding affinity constants, 1293 aptamer sequences, and more. Compared to other aptamer databases, it contains twice the number of entries found in available databases. The collection and integration of the above information categories is unique among available aptamer databases and provides a user-friendly interface. AptaDB will also be continuously updated as aptamer research evolves. We expect that AptaDB will become a powerful source for aptamer rational design and a valuable tool for aptamer screening in the future. For access to AptaDB, please visit http://lmmd.ecust.edu.cn/aptadb/.


Asunto(s)
Aptámeros de Nucleótidos , Oligonucleótidos , Bases de Datos Factuales , Aptámeros de Nucleótidos/química , Técnica SELEX de Producción de Aptámeros
12.
Soft Matter ; 20(7): 1573-1582, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270546

RESUMEN

To avoid the potential toxicity of monomer residues in synthetic polymer based organohydrogels, natural polysaccharide-based organohydrogels are expected to be used in multi-functional wearable sensory systems, but most of them have unsatisfactory stiffness, strength and fracture toughness. Herein, a cooking and soaking strategy is proposed to prepare novel natural polysaccharide-based organohydrogels possessing outstanding stiffness, strength, toughness, freezing resistance, heating resistance and long-term durability. The agar organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 2.26 MPa and a fracture toughness of 14.8 kJ m-2, the κ-carrageenan organohydrogel exhibits a fracture stress of 3.3 MPa, a Young's modulus of 4.34 MPa and a fracture toughness of 11.0 kJ m-2, and the gellan organohydrogel exhibits a fracture stress of 1.2 MPa, a Young's modulus of 2.81 MPa and a fracture toughness of 5.4 kJ m-2. Furthermore, the agar organohydrogels are assembled into multi-functional wearable sensors by introducing NaCl as a conducting agent exhibiting responses to strain (5-150%), temperature (-15 to 60 °C) and humidity (11-97%), and possessing exceptional multi-sensory capabilities. Therefore, the developed strategy has shown a new pathway towards strengthening polysaccharide-based organohydrogels with potential for application in wearable sensory systems.


Asunto(s)
Polisacáridos , Ensayo de Materiales , Humedad , Temperatura , Agar
13.
IEEE Trans Cybern ; 54(5): 2891-2900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37022821

RESUMEN

This work addresses the state estimation problem for recurrent neural networks over capacity-constrained communication channels. The intermittent transmission protocol is used to reduce the communication load, where a stochastic variable with a given distribution is used to describe the transmission interval. A corresponding transmission interval-dependent estimator is designed, and an estimation error system based on it is also derived, whose mean-square stability is proved by constructing an interval-dependent function. By analyzing the performance in each transmission interval, sufficient conditions of the mean-square stability and the strict (Q,S,R) - γ -dissipativity are established for the estimation error system. Finally, the correctness and the superiority of the developed result are illustrated by a numerical example.

14.
Comput Biol Med ; 168: 107746, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039896

RESUMEN

Cancer is a highly complex disease characterized by genetic and phenotypic heterogeneity among individuals. In the era of precision medicine, understanding the genetic basis of these individual differences is crucial for developing new drugs and achieving personalized treatment. Despite the increasing abundance of cancer genomics data, predicting the relationship between cancer samples and drug sensitivity remains challenging. In this study, we developed an explainable graph neural network framework for predicting cancer drug sensitivity (XGraphCDS) based on comparative learning by integrating cancer gene expression information and drug chemical structure knowledge. Specifically, XGraphCDS consists of a unified heterogeneous network and multiple sub-networks, with molecular graphs representing drugs and gene enrichment scores representing cell lines. Experimental results showed that XGraphCDS consistently outperformed most state-of-the-art baselines (R2 = 0.863, AUC = 0.858). We also constructed a separate in vivo prediction model by using transfer learning strategies with in vitro experimental data and achieved good predictive power (AUC = 0.808). Simultaneously, our framework is interpretable, providing insights into resistance mechanisms alongside accurate predictions. The excellent performance of XGraphCDS highlights its immense potential in aiding the development of selective anti-tumor drugs and personalized dosing strategies in the field of precision medicine.


Asunto(s)
Antineoplásicos , Aprendizaje Profundo , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Redes Neurales de la Computación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Genómica/métodos
15.
Diabetes ; 73(2): 292-305, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37934926

RESUMEN

Recent studies have found that glucose-dependent insulinotropic polypeptide receptor (GIPR) agonism can enhance the metabolic efficacy of glucagon-like peptide-1 receptor agonist treatment by promoting both weight-dependent and -independent improvements on systemic insulin sensitivity. These findings have prompted new investigations aimed at better understanding the broad metabolic benefit of GIPR activation. Herein, we determined whether GIPR agonism favorably influenced the pharmacologic efficacy of the insulin-sensitizing thiazolidinedione (TZD) rosiglitazone in obese insulin-resistant (IR) mice. Genetic and pharmacological approaches were used to examine the role of GIPR signaling on rosiglitazone-induced weight gain, hyperphagia, and glycemic control. RNA sequencing was conducted to uncover potential mechanisms by which GIPR activation influences energy balance and insulin sensitivity. In line with previous findings, treatment with rosiglitazone induced the mRNA expression of the GIPR in white and brown fat. However, obese GIPR-null mice dosed with rosiglitazone had equivalent weight gain to that of wild-type (WT) animals. Strikingly, chronic treatment of obese IR WT animals with a long-acting GIPR agonist prevented rosiglitazone-induced weight-gain and hyperphagia, and it enhanced the insulin-sensitivity effect of this TZD. The systemic insulin sensitization was accompanied by increased glucose disposal in brown adipose tissue, which was underlined by the recruitment of metabolic and thermogenic genes. These findings suggest that GIPR agonism can counter the negative consequences of rosiglitazone treatment on body weight and adiposity, while improving its insulin-sensitizing efficacy at the same time.


Asunto(s)
Resistencia a la Insulina , Receptores de la Hormona Gastrointestinal , Tiazolidinedionas , Ratones , Animales , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Rosiglitazona/uso terapéutico , Obesidad/metabolismo , Tiazolidinedionas/uso terapéutico , Receptores de la Hormona Gastrointestinal/metabolismo , Aumento de Peso , Insulina Regular Humana/uso terapéutico , Hiperfagia , Polipéptido Inhibidor Gástrico/farmacología
16.
Front Physiol ; 14: 1132078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107480

RESUMEN

Background: Body mass index (BMI) is known to affect the outcomes of spirometry indices. However, its association with spirometry indices in COPD and asthma is less studied. We aimed to explore the impact of BMI on these patients. Methods: Patients with COPD or asthma who completed bronchodilator tests (BDTs) between 2017 and 2021 were reviewed. Spirometry indices were compared among patients with COPD or asthma that were subclassified as underweight (BMI< 18.5 kg/m2), normal weight (≥18.5 to < 25), overweight (≥ 25 to < 30), and obesity (≥ 30). Results. Results: Analysis was conducted on 3891 COPD patients (age:66.5 ± 7.8 years) and 1208 asthma patients (age:59.7 ± 7.5 years). COPD patients classified as underweight demonstrated significantly lower values of pre-and post FEV1 (L, %), pre-and post FVC (L, %), and pre- and post-FEV1/FVC (all p < 0.05). In contrast, COPD patients who were overweight or obese exhibited higher values for pre-and post FEV1 (L, %), and pre and post FEV1/FVC (all p < 0.05). Within the cohort of asthma patients, those underweight had lower pre-and post FEV1 (L, %), pre and post FVC (L, %), pre and post FEV1/FVC %. Obese asthma patients displayed higher pre and post FEV1/FVC (all p < 0.05). Conclusion: Significant BMI category differences in spirometry indices can be seen in patients with COPD or asthma. Both underweight and obesity could affect the diagnosis and severity of these diseases. Recognizing these effects is essential to better management and diagnosis of these patients.

17.
Parasit Vectors ; 16(1): 455, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098083

RESUMEN

BACKGROUND: Despite years of effort to develop an effective vaccine against malaria infection, a vaccine that provides individuals with sufficient protection against malaria illness and death in endemic areas is not yet available. The development of transmission-blocking vaccines (TBVs) is a promising strategy for malaria control. A dual-antigen malaria vaccine targeting both pre- and post-fertilization antigens could effectively improve the transmission-blocking activity of vaccines against the sexual stages of the parasite. METHODS: A chimeric recombinant protein Pb22-Pbg37 (Plasmodium berghei 22-P. berghei G37) composed of 19-218 amino acids (aa) of Pb22 and the N-terminal 26-88 aa of Pbg37 was designed and expressed in the Escherichia coli expression system. The antibody titers of the fusion (Pb22-Pbg37) and mixed (Pb22+Pbg37) antigens, as well as those of Pb22 and Pbg37 single antigens were evaluated by enzyme-linked immunosorbent assay. Immunofluorescence and western blot assays were performed to test the reactivity of the antisera with the native proteins in the parasite. The induction of transmission-blocking activity (TBA) by Pb22-Pbg37 and Pb22+Pbg37 were evaluated by in vitro gametocyte activation, gamete and exflagellation center formation, ookinete conversion, and in the direct mosquito feeding assay. RESULTS: The Pb22-Pbg37 fusion protein was successfully expressed in vitro. Co-administration of Pb22 and Pbg37 as a fusion or mixed protein elicited comparable antibody responses in mice and resulted in responses to both antigens. Most importantly, both the mixed and fusion antigens induced antibodies with significantly higher levels of TBA than did each of the individual antigens when administered alone. In addition, the efficacy of vaccination with the Pb22-Pbg37 fusion protein was equivalent to that of vaccination with the mixed single antigens. CONCLUSIONS: Dual-antigen vaccines, which expand/lengthen the period during which the transmission-blocking antibodies can act during sexual-stage development, can provide a promising higher transmission-reducing activity compared to single antigens.


Asunto(s)
Vacunas contra la Malaria , Malaria , Ratones , Animales , Vacunas contra la Malaria/genética , Proteínas Protozoarias/metabolismo , Malaria/parasitología , Vacunación , Proteínas Recombinantes , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Plasmodium falciparum
18.
Psychol Res Behav Manag ; 16: 4725-4735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024658

RESUMEN

Purpose: High school students face various pressures such as academic and interpersonal relationships, which can easily lead to depression. Social exclusion is one of the important influencing factors for adolescent depression, but there is still limited research on the mechanisms of the impact that social exclusion has on depression. Therefore, this study aimed to explore the effect of social exclusion on depression among high school students, as well as the mediating role of thwarted belongingness and the moderating role of cognitive reappraisal. Methods: Researchers assessed 1041 high school students using the Center for Epidemiologic Studies Depression Scale (CES-D), Adolescent Social Exclusion Scale, Interpersonal Needs Scale, and Emotion Regulation Scale. Results: (1) Social exclusion was negatively associated with cognitive reappraisal (r = -0.224, p < 0.001), and positively associated with thwarted belongingness and depression (r = 0.657, 0.490, p <0.001). Thwarted belongingness was positively associated with depression (r = 0.617, p <0.001), and negatively associated with cognitive reappraisal (r = -0.325, p <0.001). Cognitive reappraisal was negatively associated with depression (r = -0.280, p < 0.01). (2) Social exclusion could directly predict depression, 95% CI [0.08, 0.21]. Thwarted belongingness played a partial mediating role between social exclusion and depression, 95% CI [0.30, 0.40]. (3) Cognitive reappraisal moderated the predictive effect of thwarted belongingness on depression. Conclusion: Social exclusion can influence depression through thwarted belongingness and cognitive reappraisal, and educators can reduce depression by decreasing thwarted belongingness and promoting the use of cognitive reappraisal strategies by high school students.

19.
Parasit Vectors ; 16(1): 403, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932796

RESUMEN

BACKGROUND: Safe and effective vaccines are crucial for the control and eventual elimination of malaria. Novel approaches to optimize and improve vaccine efficacy are urgently required. Nanoparticle-based delivery platforms are considered potent and powerful tools for vaccine development. METHODS: In this study, we developed a transmission-blocking vaccine against malaria by conjugating the ookinete surface antigen PSOP25 to the Acinetobacter phage coat protein AP205, forming virus-like particles (VLPs) using the SpyTag/SpyCatcher adaptor system. The combination of AP205-2*SpyTag with PSOP25-SpyCatcher resulted in the formation of AP205-PSOP25 complexes (VLP-PSOP25). The antibody titers and avidity of serum from each immunization group were assessed by ELISA. Western blot and IFA were performed to confirm the specific reactivity of the elicit antisera to the native PSOP25 in Plasmodium berghei ookinetes. Both in vitro and in vivo assays were conducted to evaluate the transmission-blocking activity of VLP-PSOP25 vaccine. RESULTS: Immunization of mice with VLP-PSOP25 could induced higher levels of high-affinity antibodies than the recombinant PSOP25 (rPSOP25) alone or mixtures of untagged AP205 and rPSOP25 but was comparable to rPSOP25 formulated with alum. Additionally, the VLP-PSOP25 vaccine enhanced Th1-type immune response with remarkably increased levels of IgG2a subclass. The antiserum generated by VLP-PSOP25 specifically recognizes the native PSOP25 antigen in P. berghei ookinetes. Importantly, antisera generated by inoculation with the VLP-PSOP25 could inhibit ookinete development in vitro and reduce the prevalence of infected mosquitoes or oocyst intensity in direct mosquito feeding assays. CONCLUSIONS: Antisera elicited by immunization with the VLP-PSOP25 vaccine confer moderate transmission-reducing activity and transmission-blocking activity. Our results support the utilization of the AP205-SpyTag/SpyCatcher platform for next-generation TBVs development.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Proteínas Protozoarias/metabolismo , Plasmodium berghei , Formación de Anticuerpos , Malaria/prevención & control , Sueros Inmunes , Anticuerpos Antiprotozoarios , Ratones Endogámicos BALB C
20.
Food Res Int ; 173(Pt 1): 113218, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803536

RESUMEN

High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of ß-lactoglobulin (ß-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of ß-sheet decreased along with the pressure. The results showed the increment of α-helix and ß-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of ß-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the ß-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.


Asunto(s)
Antioxidantes , Lactoglobulinas , Proteína de Suero de Leche , Antioxidantes/química , Presión Hidrostática , Lactoglobulinas/química , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...