Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 40(4): 1751-1759, 2019 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-31087916

RESUMEN

Dissolved organic matter (DOM) is a characteristic index of water quality, and reflects many factors, such as the economic development and protection policies of watershed. In this study, surface water samples were collected from four watersheds with different levels of urbanization in Ningbo. The DOM was analyzed using an excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) to explore the relationship between land-use and DOM. The results show that the urbanization level affected both the amount and the composition of the DOM in the studied watersheds. The concentrations of DOM evaluated by dissolved organic carbon (DOC) in urban areas (DOC=3.18 mg·L-1) and an urban-rural combined area (DOC=7.45 mg·L-1) were much higher than those in rural areas with low urbanization (DOC between 2.16 and 2.62 mg·L-1, ANOVA, P<0.001). A total of seven PARAFAC components were identified in the studied watersheds, mainly including humic-like and protein-like substances. In the highly urbanized area, DOM was mainly composed of humic-like substances, with a proportion of 61.3%. However, the water samples from the urban-rural combined area exhibited a high proportion (59.4%) of protein-like substances, indicating a strong influence of sewage and industrial discharge. In contrast, although the DOM amounts in rural areas were relatively low, the proportions of humus-like substances were high, ranging from 63.6% to 65.7%. Agricultural non-point sources were the main contributor to DOM in these areas. Moreover, the results suggest that the urbanization process could intensify the damage to the surface waters. At the initial stage of urbanization (i.e., urban-rural combined area), contaminants are mainly discharged from sewage and industrial sources; when urbanization reaches a certain level, e.g., with a well-constructed sewage collection system, water contaminants originate more from surface runoff rather than sewage. The results of this study suggest that the EEM-PARAFAC technique can provide semi-quantitative source tracking of surface water, as well as an inexpensive and effective tool for policy makers to overcome the insensitivity of general water quality indices.

2.
Chemosphere ; 195: 594-605, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29278849

RESUMEN

In this study, the concentrations of 4-nonylphenol (4-NP), 4-tert-octylphenol (4-t-OP), and bisphenol A (BPA) in the water column of the Yong River were investigated and found to be in the range of 140-3948, 6-828, and 15-1415 ng L-1, respectively. A fate and transport model coupled with the Water Quality Analysis Simulation Program (WASP) was developed. After model calibration and validation, the distributions of 4-NP, 4-t-OP, and BPA in the Yong River were modeled for the duration of 2015. The total contaminant loads from the upstream boundary, four tributaries and two wastewater treatment plants were determined to be 2318 kg yr-1 for 4-NP, 506 kg yr-1 for 4-t-OP, and 970 kg yr-1 for BPA. Both measured and modeled results reported higher concentrations of the selected contaminants near river confluences and at the outfalls of the wastewater treatment plants. Peak concentrations were found to always appear in months with relatively reduced precipitation. The influences of adsorption and degradation on the dissolved concentrations of the selected chemicals were also modeled. The combined effects of adsorption and degradation were found to reduce dissolved concentrations of 4-NP, 4-t-OP, and BPA by 17.9%, 30.7%, and 12.1%, respectively. Adsorption was shown to reduce 4-NP concentrations in the Yong River more than degradation. Conversely, adsorption and degradation caused almost equal reductions in the dissolved concentrations of 4-t-OP and degradation caused larger decreases than adsorption in the dissolved concentrations of BPA.


Asunto(s)
Compuestos de Bencidrilo/análisis , Monitoreo del Ambiente/métodos , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , China , Ríos/química , Aguas Residuales/análisis , Purificación del Agua , Calidad del Agua
3.
Huan Jing Ke Xue ; 34(7): 2686-93, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24028000

RESUMEN

To solve the problems of intercalated organoclay such as low surface area and inhomogeneous organic loading, natural vermiculite was activated by acid leaching and then modified by trimethylchlorosilane (CTMS) and triethylchlorosilane (CTES). The modified materials were characterized by FTIR, BET, SEM and TG. Experimental results indicated that the surface area of the modified acid vermiculite (361.0 m2 x g(-1)) was much larger than that of the intercalated organovermiculite (6.0 m2 x g(-1)), moreover, the organic groups were grafted onto the surface covalently. Diethyl phthalate (DEP), a typical hydrophobic micro-organic pollutant, was used to test the adsorption capacity of different adsorbents. The adsorption amounts of DEP were 63.7, 51.2 and 15.7 mg x g(-1) for CTES, CTMS and intercalated organovermiculite in this study, respectively. The high organic affinity of modified acid vermiculite was due to both the bigger surface area and the homogeneous organic loading. The adsorption kinetics was found to follow the pseudosecond-order model. The isotherms exhibited linear characteristics and could be described by Henry and Freundlich equations, indicating that the partition process is the main control mechanism of the removal of DEP.


Asunto(s)
Silicatos de Aluminio/química , Compuestos Orgánicos/aislamiento & purificación , Ácidos Ftálicos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Ácidos/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Ácidos Ftálicos/química , Compuestos de Trimetilsililo/química , Contaminantes Químicos del Agua/química
4.
J Colloid Interface Sci ; 369(1): 344-51, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22196344

RESUMEN

A hybrid organic-inorganic material based on vermiculite was prepared to remove diethyl phthalate (DEP) from aqueous solution. Natural vermiculite was activated with HCl to improve the specific surface area and was then modified by silanization using trimethylchlorosilane. Organovermiculite prepared by ion exchange with hexadecyl trimethylammonium bromide (HDTMAB) was also tested for comparison. The leaching of 2 mol L(-1) HCl at 80°C increased the specific surface area of vermiculite from 14.4 to 500.0m(2)g(-1), and the average pore-diameter was decreased from 7.90 nm to 2.75 nm. Fourier transform infrared spectroscopy (FTIR) spectra indicated that trimethysilyl groups were grafted covalently on the surface of acid vermiculites. The specific surface area of trimethylchlorosilane-modified acid vermiculites (TMAVs) (355.4 m(2) g(-1)) was much larger than that of organovermiculite (6.0 m(2) g(-1)). The isotherm adsorption experiments of DEP showed that TMAVs exhibited linear isotherms, suggesting that the uptake of DEP was controlled by partitioning mechanism. The maximal partition coefficient (K(d)) of TMAVs was 3.1 times higher than that of organovermiculite, implying that TMAVs had stronger organic affinity than organovermiculite. The results demonstrate that the adsorption capacity and mechanism of organoclays were controlled by the specific surface area and organic loading, whereas the length of alkyl chain of organic modifier was not the key factor.


Asunto(s)
Silicatos de Aluminio/química , Ácidos Ftálicos/aislamiento & purificación , Compuestos de Trimetilsililo/química , Contaminantes Químicos del Agua/aislamiento & purificación , Agua/química , Adsorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA