Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37777065

RESUMEN

INTRODUCTION: Serious Staphylococcus aureus (SA) infection is one of the most life-threatening diseases. Interferon-induced protein 35 (IFP35) is a pleiotropic factor that participates in multiple biological functions, however, its biological role in SA infection is not fully understood. Ferroptosis is a new type of regulated cell death driven by the accretion of free iron and toxic lipid peroxides and plays critical roles in tissue damage. Whether ferroptosis is involved in SA-induced immunopathology and its regulatory mechanisms remain unknown. OBJECTIVES: We aimed to determine the role and underlying mechanisms of IFP35 in SA-induced lung infections. METHODS: SA infection models were established using wild-type (WT) and IFP35 knockout (Ifp35-/-) mice or macrophages. Histological analysis was performed to assess lung injury. Quantitative real-time PCR, western blotting, flow cytometry, and confocal microscopy were performed to detect ferroptosis. Co-IP and immunofluorescence were used to elucidate the molecular regulatory mechanisms. RESULTS: We found that IFP35 levels increased in the macrophages and lung tissue of SA-infected mice. IFP35 deficiency protected against SA-induced lung damage in mice. Moreover, ferroptosis occurred and contributed to lung injury after SA infection, which was ameliorated by IFP35 deficiency. Mechanically, IFP35 facilitated the ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), aggravating SA-induced ferroptosis and lung injury. CONCLUSIONS: Our data demonstrate that IFP35 promotes ferroptosis by facilitating the ubiquitination and degradation of Nrf2 to exacerbate SA infection. Targeting IFP35 may be a promising approach for treating infectious diseases caused by SA.

2.
Nat Immunol ; 24(3): 423-438, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807642

RESUMEN

Respiratory viral infections reprogram pulmonary macrophages with altered anti-infectious functions. However, the potential function of virus-trained macrophages in antitumor immunity in the lung, a preferential target of both primary and metastatic malignancies, is not well understood. Using mouse models of influenza and lung metastatic tumors, we show here that influenza trains respiratory mucosal-resident alveolar macrophages (AMs) to exert long-lasting and tissue-specific antitumor immunity. Trained AMs infiltrate tumor lesions and have enhanced phagocytic and tumor cell cytotoxic functions, which are associated with epigenetic, transcriptional and metabolic resistance to tumor-induced immune suppression. Generation of antitumor trained immunity in AMs is dependent on interferon-γ and natural killer cells. Notably, human AMs with trained immunity traits in non-small cell lung cancer tissue are associated with a favorable immune microenvironment. These data reveal a function for trained resident macrophages in pulmonary mucosal antitumor immune surveillance. Induction of trained immunity in tissue-resident macrophages might thereby be a potential antitumor strategy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Gripe Humana , Neoplasias Pulmonares , Ratones , Animales , Humanos , Macrófagos Alveolares , Neoplasias Pulmonares/metabolismo , Pulmón , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA