Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Drug Metab Dispos ; 51(11): 1515-1526, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37643879

RESUMEN

Ensartinib (X-396) is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) indicated for the treatment of ALK-positive patients with locally advanced or metastatic non-small cell lung cancer. Although in vitro experiments and molecular docking suggested its potential as a cytochrome P450 inhibitor, no further investigation or clinical trials have been conducted to assess its drug-drug interaction (DDI) risk. In this study, we conducted a series of in vitro experiments to elucidate the inhibition mechanism of ensartinib. Furthermore, a physiologically-based pharmacokinetic (PBPK) model was developed based on in vitro, in silico, and in vivo parameters, verified using clinical data, and applied to predict the clinical DDI mediated by ensartinib. The in vitro incubation experiments suggested that ensartinib exhibited strong time-dependent inhibition. Simulation results from the PBPK model indicated a significant increase in the exposure of CYP3A substrates in the presence of ensartinib, with the maximal plasma concentration and area under the plasma concentration-time curve increasing up to 12-fold and 29-fold for sensitive substrates. Based on these findings, it is evident that co-administration of ensartinib and CYP3A substrates requires careful regulatory consideration. SIGNIFICANCE STATEMENT: Ensartinib was found to be a strong time-dependent inhibitor of CYP3A for the first time based on in vitro experiments, but there was no research conducted to estimate the risk of drug-drug interaction (DDI) of ensartinib in clinic. Therefore, the first ensartinib physiologically based pharmacokinetic model was developed and applied to predict various untested scenarios. The simulation result indicated that the exposure of CYP3A substrate increased significantly and urged the further clinical DDI study.

2.
Theranostics ; 13(9): 2896-2913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284449

RESUMEN

Rationale: Gustation is important to several biological functions in mammals. However, chemotherapy drugs often harm taste perception in cancer patients, while the underlying mechanism is still unclear for most drugs and there is no effective way to restore taste function. This study investigated the effects of cisplatin on the taste cell homeostasis and gustatory function. Methods: We used both mice and taste organoid models to study the effect of cisplatin on taste buds. Gustometer assay, gustatory nerve recording, RNA-Sequencing, quantitative PCR, and immunohistochemistry was performed to analyze the cisplatin-induced alteration in taste behavior and function, transcriptome, apoptosis, cell proliferation and taste cell generation. Results: Cisplatin inhibited proliferation and promoted apoptosis in the circumvallate papilla, leading to significant impairment in taste function and receptor cell generation. The transcriptional profile of genes associated with cell cycle, metabolic process and inflammatory response was significantly altered after cisplatin treatment. Cisplatin inhibited growth, promoted apoptosis, and deferred taste receptor cell differentiation in taste organoids. LY411575, a γ-secretase inhibitor, reduced the number of apoptotic cells and increased the number of proliferative cells and taste receptor cells, potentially suggesting as a taste tissue protective agent against chemotherapy. LY411575 treatment could offset the increased number of Pax1+ or Pycr1+ cells induced by cisplatin in the circumvallate papilla and taste organoids. Conclusion: This study highlights the inhibitory effects of cisplatin on taste cell homeostasis and function, identifies critical genes and biological processes regulated by chemotherapy, and proposes potential therapeutic targets and strategy for taste dysfunction in cancer patients.


Asunto(s)
Papilas Gustativas , Ratones , Animales , Papilas Gustativas/metabolismo , Cisplatino/farmacología , Percepción del Gusto , Gusto/genética , Homeostasis , Mamíferos
3.
Brain Behav Immun ; 111: 151-168, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37061103

RESUMEN

The olfactory epithelium undergoes constant neurogenesis throughout life in mammals. Several factors including key signaling pathways and inflammatory microenvironment regulate the maintenance and regeneration of the olfactory epithelium. In this study, we identify TMEM59 (also known as DCF1) as a critical regulator to the epithelial maintenance and regeneration. Single-cell RNA-Seq data show downregulation of TMEM59 in multiple epithelial cell lineages with aging. Ablation of TMEM59 leads to apparent alteration at the transcriptional level, including genes associated with olfactory transduction and inflammatory/immune response. These differentially expressed genes are key components belonging to several signaling pathways, such as NF-κB, chemokine, etc. TMEM59 deletion impairs olfactory functions, attenuates proliferation, causes loss of both mature and immature olfactory sensory neurons, and promotes infiltration of inflammatory cells, macrophages, microglia cells and neutrophils into the olfactory epithelium and lamina propria. TMEM59 deletion deteriorates regeneration of the olfactory epithelium after injury, with significant reduction in the number of proliferative cells, immature and mature sensory neurons, accompanied by the increasing number of inflammatory cells and macrophages. Anti-inflammation by dexamethasone recovers neuronal generation and olfactory functions in the TMEM59-KO animals, suggesting the correlation between TMEM59 and inflammation in regulating the epithelial maintenance. Collectively, TMEM59 regulates olfactory functions, as well as neuronal generation in the olfactory epithelium via interaction with inflammation, suggesting a potential role in therapy against olfactory dysfunction associated with inflamm-aging.


Asunto(s)
Neuronas Receptoras Olfatorias , Animales , Mucosa Olfatoria/metabolismo , Inflamación/metabolismo , Neurogénesis , FN-kappa B/metabolismo , Mamíferos
4.
Adv Sci (Weinh) ; 10(7): e2206101, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638268

RESUMEN

Thanks to the gustatory system, humans can experience the flavors in foods and drinks while avoiding the intake of some harmful substances. Although great advances in the fields of biotechnology, microfluidics, and nanotechnologies have been made in recent years, this astonishing recognition system can hardly be replaced by any artificial sensors designed so far. Here, taste organoids are coupled with an extracellular potential sensor array to form a novel bioelectronic organoid and developed a taste organoids-on-a-chip system (TOS) for highly mimicking the biological sense of taste ex vivo with high stability and repeatability. The taste organoids maintain key taste receptors expression after the third passage and high cell viability during 7 days of on-chip culture. Most importantly, the TOS not only distinguishs sour, sweet, bitter, and salt stimuli with great specificity, but also recognizes varying concentrations of the stimuli through an analytical method based on the extraction of signal features and principal component analysis. It is hoped that this bioelectronic tongue can facilitate studies in food quality controls, disease modelling, and drug screening.


Asunto(s)
Sistemas Microfisiológicos , Gusto , Humanos , Lengua , Supervivencia Celular , Evaluación Preclínica de Medicamentos
5.
Front Pharmacol ; 13: 970539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091758

RESUMEN

Aim: It has been found that the co-administration of nifedipine with apatinib could cause exposure changes of nifedipine in vivo. But, whether this pharmacokinetic drug-drug interaction (DDI) between nifedipine and apatinib could enhance the antihypertensive effect of nifedipine, causing sever changes of blood pressure was unknown. Therefore, the aim of the present study was to conduct the pharmacokinetic/pharmacodynamic (PK/PD) modelling to evaluate the effect of pharmacokinetic changes on the antihypertensive effect of nifedipine. Thus, the results could guide the co-administration of these two drugs in clinic. Methods: A physiologically-based pharmacokinetic (PBPK) model was first developed for nifedipine. The pharmacokinetic DDI between nifedipine and apatinib was evaluated. Then the verified PBPK models were linked to a PD model for investigating whether the exposure changes of nifedipine could cause severe changes in blood pressure. Furthermore, the changes in blood pressure caused by combination with apatinib were also assessed in patients with hepatic impairment via the PBPK/PD models. Results: The predicted area under plasma concentration-time profile (AUC), maximum concentration (Cmax), area under effect-time profile (AUE), and maximum reduction in systolic blood pressure (Rmax) are all within 0.5-2.0-fold of the observed data, indicating that the PBPK/PD models for nifedipine are successfully established. The increases of predicted AUC and Cmax of nifedipine in the presence of apatinib are 1.73 and 1.41-fold, respectively. Co-administration of nifedipine with apatinib could cause exposure changes of nifedipine in vivo. However, the predicted AUE and Rmax changes of nifedipine in the presence to the absence of apatinib in cancer patients as well as in patients with hepatic impairment are all within 1.25-fold. The results indicate that the exposure changes of nifedipine caused by combination of apatinib has little effect on the changes of systolic blood pressure both in cancer patients and patients with hepatic impairment. Conclusion: The pharmacokinetic changes of nifedipine caused by co-administration with apatinib has little impact on the antihypertensive effect of nifedipine. Apatinib is unlikely to cause severe pharmacodynamic DDI via inhibition of CYP3A4. It is suggested that nifedipine could be used in combination with apatinib without dose adjustment in clinic.

6.
Theranostics ; 12(13): 5631-5644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966594

RESUMEN

Olfactory sensory neurons (OSNs) located in the olfactory epithelium (OE) detect thousands of volatile environmental odors to form the sense of smell. OSNs are generated from basal cells, which show the characteristics of progenitor/stem cells. In the mammalian OE, persistent neurogenesis occurs during lifetime, providing a unique model to study the tissue turnover and fate determination of stem cells. Methods: Immunohistochemical analysis and RNAscope in situ hybridization indicated the localization of leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) in the intact and injured OE. Lineage tracing was conducted to analyze the dynamic role of Lgr5+ cells in the OE homeostasis and regeneration. We also used DTR-driven genetic depletion of Lgr5+ cells and lentivirus-mediated Lgr5 downregulation to demonstrate the essential role of Lgr5+ cells in the OE regeneration. Results: We show that Lgr5 marks horizontal basal cells (HBCs) in the OE of adults but not newborns. We revisit the role of Lgr5+ cells in the OE homeostasis and regeneration, and find that Lgr5+ cells participate in the OE homeostasis from neonatal to one-month-old age, as well as in the OE regeneration post injury. During the OE regeneration, Lgr5 is transiently expressed in apical supporting cells, immature neurons, and mature sensory neurons. The Lgr5+ cells become or generate HBCs in the regenerated OE. DTR-driven cell depletion shows that Lgr5+ cells are not necessary in the adult OE homeostasis, but required in the recovery of OE from injury. Lgr5 down-regulation by lentiviral infection also demonstrates the essential role of Lgr5 expression in the OE regeneration. Conclusion: Our study elucidates the role of Lgr5+ cells in the OE homeostasis and regeneration, potentially providing a candidate to cell-based therapy against olfactory dysfunction.


Asunto(s)
Células-Madre Neurales , Olfato , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Mamíferos , Células-Madre Neurales/metabolismo , Mucosa Olfatoria/metabolismo
7.
J Biol Chem ; 298(9): 102331, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926708

RESUMEN

G protein-coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in nonolfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and volume of the odorant-binding pocket, maintains the pocket hydrophobicity, and acts as a gatekeeper of odorant binding. Therefore, we propose the interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. Furthermore, the 3D models created here enabled virtual screening of new OR agonists and antagonists, which exhibited a 70% hit rate in cell assays. Our approach can potentially be generalized to structure-based ligand screening for other G protein-coupled receptors that lack high-resolution 3D structures.


Asunto(s)
Odorantes , Receptores Odorantes , Olfato , Animales , Humanos , Ligandos , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica en Hélice alfa , Receptores Odorantes/química , Receptores Odorantes/genética , Olfato/fisiología
8.
FASEB J ; 36(7): e22384, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639289

RESUMEN

Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.


Asunto(s)
Receptores Odorantes , Animales , Membrana Celular/metabolismo , Mamíferos/metabolismo , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
9.
ACS Cent Sci ; 8(3): 379-387, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35350604

RESUMEN

G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diverse. This work investigated how the amino-acid sequences of olfactory receptors (ORs)-the largest GPCR family-encode diversified responses to various ligands. We established a proteochemometric (PCM) model based on OR sequence similarities and ligand physicochemical features to predict OR responses to odorants using supervised machine learning. The PCM model was constructed with the aid of site-directed mutagenesis, in vitro functional assays, and molecular simulations. We found that the ligand selectivity of the ORs is mostly encoded in the residues up to 8 Å around the orthosteric pocket. Subsequent predictions using Random Forest (RF) showed a hit rate of up to 58%, as assessed by in vitro functional assays of 111 ORs and 7 odorants of distinct scaffolds. Sixty-four new OR-odorant pairs were discovered, and 25 ORs were deorphanized here. The best model demonstrated a 56% deorphanization rate. The PCM-RF approach will accelerate OR-odorant mapping and OR deorphanization.

10.
Biomed Res Int ; 2022: 1562358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198631

RESUMEN

OBJECTIVE: To determine whether arthrographic distention combined with manipulation for frozen shoulder provides additional benefits. METHODS: A total of 180 participants from five clinical centers with pain and stiffness in predominantly 1 shoulder for >3 months entered the study, and 165 completed the study. The control group was treated with arthrographic distention alone, and the treatment group underwent manipulation after resting for 5 minutes following arthrographic distention. Patients were followed up at the one and two weeks and at three and six months. For the clinical evaluation, shoulder-specific disability measure (SPADI) score, the visual analog scales (VASs) for pain, and range of active motion were used. RESULTS: 83 patients out of 90 in the treatment group and 82 out of 90 in the control finished the entire study period. SPADI, VAS, Constant-Murley (CM), and range of motion (ROM) were improved after treatments in both groups. The statistical differences were not observed in the CM, adduction, internal rotation, and posterior extension function between groups (P > .05) after the first treatment. And the statistical differences were not observed in the internal rotation, the extorsion, and posterior extension function (P > .05) after the second treatment. CONCLUSION: Distention arthrography plus manual therapy provided faster pain relief, a higher level of patient satisfaction, and an earlier improvement in AROM of the shoulder than distention arthrography alone in patients with frozen shoulder.


Asunto(s)
Artrografía/métodos , Bursitis/terapia , Manipulación Ortopédica , Bursitis/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Estudios Prospectivos , Método Simple Ciego
12.
Front Pharmacol ; 12: 780937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880763

RESUMEN

Aim: Apatinib is an orally administered vascular epidermal growth factor receptor (VEGFR)-tyrosine kinase inhibitors approved for the treatment of advanced gastric adenocarcinoma or gastric esophageal junction adenocarcinoma. Apatinib is predominantly metabolized by CYP3A4/5, followed by CYP2D6. The present study aimed to evaluate the potential drug-drug interaction (DDI) and drug-disease interaction (DDZI) risks of apatinib in Chinese volunteers. Methods: Modeling and simulation were conducted using Simcyp Simulator. The input parameters required for modeling were obtained from literature research or experiments. Then, the developed physiologically based pharmacokinetic (PBPK) models were applied to evaluate single-dose DDI potential in Chinese healthy volunteers with weak and moderate CYP3A inhibitors, strong CYP2D6 inhibitors, as well as CYP3A4 inducers. The DDZI potential was also predicted in patients with hepatic or renal impairment. Results: The developed PBPK models accurately assessed apatinib pharmacokinetics following single-dose administration in Chinese healthy volunteers and cancer patients. The DDI simulation showed 2-4-fold changes in apatinib exposures by moderate CYP3A4 inhibitors and CYP3A4 inducers. A moderate increase of apatinib exposure (1.25-2-fold) was found with strong CYP2D6 inhibitor. In the DDZI simulation with hepatic impairment, the AUC of apatinib was significantly increased by 2.25-fold and 3.04-fold for Child-Pugh B and Child-Pugh C, respectively, with slightly decreased Cmax by 1.54 and 1.67-fold, respectively. Conclusion: The PBPK models developed in the present study would be highly beneficial to quantitatively predict the pharmacokinetic changes of apatinib under different circumstances, which might be difficult to evaluate clinically, so as to avoid some risks in advance.

13.
Nat Neurosci ; 24(12): 1699-1710, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34795450

RESUMEN

The striatum comprises multiple subdivisions and neural circuits that differentially control motor output. The islands of Calleja (IC) contain clusters of densely packed granule cells situated in the ventral striatum, predominantly in the olfactory tubercle (OT). Characterized by expression of the D3 dopamine receptor, the IC are evolutionally conserved, but have undefined functions. Here, we show that optogenetic activation of OT D3 neurons robustly initiates self-grooming in mice while suppressing other ongoing behaviors. Conversely, optogenetic inhibition of these neurons halts ongoing grooming, and genetic ablation reduces spontaneous grooming. Furthermore, OT D3 neurons show increased activity before and during grooming and influence local striatal output via synaptic connections with neighboring OT neurons (primarily spiny projection neurons), whose firing rates display grooming-related modulation. Our study uncovers a new role of the ventral striatum's IC in regulating motor output and has important implications for the neural control of grooming.


Asunto(s)
Islotes Olfatorios , Estriado Ventral , Animales , Cuerpo Estriado/metabolismo , Aseo Animal , Ratones , Neuronas/fisiología , Tubérculo Olfatorio
14.
J Neurosci ; 41(26): 5620-5637, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34016714

RESUMEN

The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.


Asunto(s)
Quitinasas/metabolismo , Inflamación/metabolismo , Mucosa Olfatoria/fisiología , Regeneración/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
15.
BMC Cancer ; 21(1): 483, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931030

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor, and more than 70% of new cases are in East and Southeast Asia. However, association between NPC and pseudogenes playing important roles in genesis of multiple tumor types is still not clear and needs to be investigated. METHODS: Using RNA-Sequencing (RNA-seq) technology, we analyzed pseudogene expression in 13 primary NPC and 6 recurrent NPC samples as well as their paracancerous counterparts. Quantitative PCR was used to validate the differentially expressed pseudogenes. RESULTS: We found 251 differentially expressed pseudogenes including 73 up-regulated and 178 down-regulated ones between primary NPC and paracancerous tissues. Enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted to filter out the key pseudogenes. We reported that pseudogenes from cytochrome P450 (CYP) family, such as CYP2F2P, CYP2G1P, CYP4F24P, CYP2B7P and CYP2G2P were significantly down-regulated in NPC compared to paracancerous tissues, while IGHV1OR15-2, IGHV3-11, FCGR1CP and IGHV3-69-1 belonging to Fc gamma receptors were significantly up-regulated. CYP2B7P, CYP2F2P and CYP4F26P were enriched in arachidonic acid metabolism pathway. The qRT-PCR analysis validated the lower expression of pseudogenes CYP2F2P and CYP2B7P in NPC tissues and cell lines compared to paracancerous tissues and normal human nasopharyngeal epithelial cell line. CYP2B7P overexpression weakened migratory and invasive capacity of NPC cell line. Moreover, the expression pattern of those pseudogenes in recurrent NPC tissues was different from the primary NPC. CONCLUSION: This study suggested the role of pseudogenes in tumorigenesis and progression, potentially functioning as therapeutic targets to NPC.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Recurrencia Local de Neoplasia/genética , Seudogenes , Receptores de IgG/genética , Análisis de Secuencia de ARN , Adulto , Anciano , Ácido Araquidónico/metabolismo , Línea Celular Tumoral , Movimiento Celular , Familia 2 del Citocromo P450/genética , Regulación hacia Abajo , Femenino , Ontología de Genes , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica , Seudogenes/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección/métodos , Regulación hacia Arriba
16.
Front Bioeng Biotechnol ; 9: 646554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33855015

RESUMEN

The transdermal route of administration provides numerous advantages over conventional routes i.e., oral or injectable for the treatment of different diseases and cosmetics applications. The skin also works as a reservoir, thus deliver the penetrated drug for more extended periods in a sustained manner. It reduces toxicity and local irritation due to multiple sites for absorption and owes the option of avoiding systemic side effects. However, the transdermal route of delivery for many drugs is limited since very few drugs can be delivered at a viable rate using this route. The stratum corneum of skin works as an effective barrier, limiting most drugs' penetration posing difficulty to cross through the skin. Fortunately, some non-invasive methods can significantly enhance the penetration of drugs through this barrier. The use of nanocarriers for increasing the range of available drugs for the transdermal delivery has emerged as a valuable and exciting alternative. Both the lipophilic and hydrophilic drugs can be delivered via a range of nanocarriers through the stratum corneum with the possibility of having local or systemic effects to treat various diseases. In this review, the skin structure and major obstacle for transdermal drug delivery, different nanocarriers used for transdermal delivery, i.e., nanoparticles, ethosomes, dendrimers, liposomes, etc., have been discussed. Some recent examples of the combination of nanocarrier and physical methods, including iontophoresis, ultrasound, laser, and microneedles, have also been discussed for improving the therapeutic efficacy of transdermal drugs. Limitations and future perspectives of nanocarriers for transdermal drug delivery have been summarized at the end of this manuscript.

17.
Arch Toxicol ; 95(5): 1683-1701, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713150

RESUMEN

The risk of drug-induced liver injury (DILI) poses a major challenge for development of natural products derived from traditional Chinese medicines (NP-TCMs). It is urgent to find a new method for the safety assessment of the NP-TCMs. Recent study has reported an in vitro/in silico method to estimate the acceptable daily intake of hepatotoxic compounds using support vector machine (SVM) classifier and physiologically based pharmacokinetic (PBPK) modeling. However, this method is not suitable for estimating the dosing schedule of compounds which are administered in multiple daily doses. Thus, in this study, the method mentioned above was in particular optimized, and used to estimate the hepatotoxic plasma concentrations of 17 NP-TCMs. Additionally, the oral dosing schedules of the triptolide, emodin, matrine and oxymatrine were also predicted by the SVM classifier and PBPK modeling. The optimization included that: (1) in vitro cytotoxicity data of 28 training set compounds was optimized using benchmark concentrations (BMC) modeling; (2) AUC of the training set compound was used as the in vivo metric instead of Cmax to better reflect the total daily exposure of compounds which are administered in multiple daily doses; (3) using the mean AUC in plasma as in vivo metric and BMC value as in vitro metric could achieve the better toxicity separation index (0.962 vs. 0.938); (4) The TSI for Cmax and BMC values was 0.985 calculated in this study, and the results indicated that BMC modeling improved the separation performance. This optimized in vitro-in vivo extrapolation (IVIVE) workflow could extrapolate in vitro BMC to blood concentrations and the oral dosing schedule which are corresponding to certain risk of hepatotoxicity. The estimated safe dosing schedule of oxymatrine by this optimized method was close to the clinical recommended dosing regimen. The results indicate that the optimized method could be used to predict the dosing schedule of compounds administered in multiple daily doses, and our optimized workflow could be helpful for the safety assessment as well as the research and development on NP-TCMs.


Asunto(s)
Productos Biológicos/toxicidad , Medicamentos Herbarios Chinos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas , China , Simulación por Computador , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Medicamentos Herbarios Chinos/farmacocinética , Humanos , Técnicas In Vitro , Medicina Tradicional China , Modelos Biológicos , Máquina de Vectores de Soporte
18.
Drugs Real World Outcomes ; 8(2): 131-140, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33569736

RESUMEN

BACKGROUND: Several pharmacological agents, such as chloroquine/hydroxychloroquine, have been promoted for COVID-19 treatment or pre-exposure prophylaxis. However, no comprehensive evaluation of the safety of these possible agents is available, and is urgently needed. OBJECTIVE: The purpose of this study was to investigate the risks of cardiac adverse events associated with the possible pharmacotherapies for COVID-19, including certain antimalarial, antiviral, and antibiotic drugs. PATIENTS AND METHODS: We conduced retrospective pharmacovigilance analyses of the US Food and Drug Administration Adverse Event Reporting System database. The reporting odds ratio (ROR), a data mining algorithm commonly used in pharmacovigilance assessment, was generated to quantify the detection signal of adverse events. RESULTS: Among individuals without coronavirus infection from 2015 Q1 to 2020 Q1, increased risks for cardiac disorders were found for antiviral agents such as chloroquine/hydroxychloroquine (ROR: 1.68; 95% confidence interval [CI] 1.66-1.70), lopinavir/ritonavir (ROR: 1.52; 95% CI 1.39-1.66), and antibiotics such as azithromycin (ROR: 1.37; 95% CI 1.30-1.44) and ceftriaxone (ROR: 1.92; 95% CI 1.80-2.05). Increased serious cardiac adverse events, including myocardial infarction, arrhythmia, and cardiac arrest, were also reported for these drugs. Further analyses of individuals with coronavirus infections revealed that 40% of individuals receiving chloroquine/hydroxychloroquine reported serious cardiac adverse events. Two cases resulted in QT prolongations and one case resulted in cardiac arrest. Chloroquine/hydroxychloroquine and azithromycin contributed to all the QT prolongation and cardiac arrest cases. CONCLUSIONS: The current pharmacotherapies for COVID-19 are associated with increased risks of cardiac adverse events. Variations in the cardiac safety profiles of these pharmacotherapies were also observed. Clinicians should closely monitor patients with COVID-19, especially those at high risk, using chloroquine/hydroxychloroquine and azithromycin.

19.
Theranostics ; 11(2): 684-699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391499

RESUMEN

Olfactory dysfunctions, including hyposmia and anosmia, affect ~100 million people around the world and the underlying causes are not fully understood. Degeneration of olfactory sensory neurons and incapacity of globose basal cells to generate olfactory sensory neurons are found in elder people and patients with smell disorders. Thus, olfactory stem cell may function as a promising tool to replace inactivated globose basal cells and to generate sensory neurons. Methods: We established clonal expansion of cells from the murine olfactory epithelium as well as colony growth from human olfactory mucosa using Matrigel-based three-dimensional system. These colonies were characterized by immunostaining against olfactory epithelium cellular markers and by calcium imaging of responses to odors. Chemical addition was optimized to promote Lgr5 expression, colony growth and sensory neuron generation, tested by quantitative PCR and immunostaining against progenitor and neuronal markers. The differential transcriptomes in multiple signaling pathways between colonies under different base media and chemical cocktails were determined by RNA-Seq. Results: In defined culture media, we found that VPA and CHIR99021 induced the highest Lgr5 expression level, while LY411575 resulted in the most abundant yield of OMP+ mature sensory neurons in murine colonies. Different base culture media with drug cocktails led to apparent morphological alteration from filled to cystic appearance, accompanied with massive transcriptional changes in multiple signaling pathways. Generation of sensory neurons in human colonies was affected through TGF-ß signaling, while Lgr5 expression and cell proliferation was regulated by VPA. Conclusion: Our findings suggest that targeting expansion of olfactory epithelium/mucosa colonies in vitro potentially results in discovery of new source to cell replacement-based therapy against smell loss.


Asunto(s)
Alanina/análogos & derivados , Azepinas/farmacología , Neurogénesis , Mucosa Olfatoria/citología , Neuronas Receptoras Olfatorias/citología , Piridinas/farmacología , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Alanina/farmacología , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Receptores Acoplados a Proteínas G/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
20.
Medicine (Baltimore) ; 99(36): e21928, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899027

RESUMEN

BACKGROUND: Osteoporosis is a clinically common metabolic disease, especially in postmenopausal women. Tai Chi might be beneficial in osteoporosis patients. This study will be performed to examine the effects of Tai Chi on bone mineral density of postmenopausal osteoporosis. METHODS: We will search the electronical databases and hand-searching journals or reference lists. The study screening and data extraction will be carried out by 2 investigators independently. The primary outcome is bone mineral density (lumbar spine, Ward's triangle, trochanter, proximal femur, femoral neck, or total hip). Secondary outcomes are pain score, alkaline phosphatase, osteocalcin, and adverse effects. Review Manager V.5.3 software will be used to compute the data. RESULTS: The results of the study will provide a reliable evidence to assess the effects of Tai Chi on bone mineral density of postmenopausal osteoporosis. CONCLUSION: The conclusion of our systematic review will answer whether Tai Chi is an effective intervention to improve bone mineral density of postmenopausal osteoporosis.


Asunto(s)
Densidad Ósea , Osteoporosis Posmenopáusica/terapia , Taichi Chuan , Femenino , Humanos , Metaanálisis como Asunto , Dimensión del Dolor , Revisiones Sistemáticas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...