Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Adv Sci (Weinh) ; 11(12): e2307360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224220

RESUMEN

Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , Nanopartículas del Metal , Humanos , Oro/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Rayos Láser
2.
Cell Death Dis ; 14(8): 539, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604811

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Ferroptosis , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Ferroptosis/genética , Histonas/genética , Lisina , Neoplasias Renales/genética , Histona Metiltransferasas
3.
Curr Opin Neurobiol ; 81: 102735, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263136

RESUMEN

Gap junctions between cells are ubiquitously expressed in the developing brain. They are involved in major steps of neocortical development, including neurogenesis, cell migration, synaptogenesis, and neural circuit formation, and have been implicated in cortical column formation. Dysfunctional gap junctions can contribute to or even cause a variety of brain diseases. Although the role of gap junctions in neocortical development is better known, a comprehensive understanding of their functions is far from complete. Here we explore several critical open questions surrounding gap junctions and their involvement in neural circuit development. Addressing them will greatly impact our understanding of the fundamental mechanisms of neocortical structure and function as well as the etiology of brain disease.


Asunto(s)
Neocórtex , Uniones Comunicantes/fisiología , Neurogénesis/fisiología
4.
Cell Signal ; 109: 110746, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286119

RESUMEN

Lung cancer has high morbidity and mortality. This study demonstrated that Bufalin inhibits the proliferation of lung cancer cells in vivo / in vitro by suppressing Hippo-YAP pathway. Here, we found that Bufalin promoted the binding of LATS and YAP to elevate the level of YAP phosphorylation. Phosphorylated YAP could not successfully enter the nucleus to activate the expression of downstream proliferation-related target genes Cyr61 and CTGF, whereas the YAP retained in the cytoplasm further bound to ß-TrCP and underwent ubiquitination and degradation. This study verified the key role of YAP in stimulating the proliferation of lung cancer and revealed the anticancer target of Bufalin. Therefore, this study provides a theoretical basis for the anticancer effect of Bufalin, and suggests that Bufalin can be a potential anticancer drug.


Asunto(s)
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular/genética
5.
J Nanobiotechnology ; 21(1): 104, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964516

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common pathological type of LC and ranks as the leading cause of cancer deaths. Circulating exosomes have emerged as a valuable biomarker for the diagnosis of NSCLC, while the performance of current electrochemical assays for exosome detection is constrained by unsatisfactory sensitivity and specificity. Here we integrated a ratiometric biosensor with an OR logic gate to form an assay for surface protein profiling of exosomes from clinical serum samples. By using the specific aptamers for recognition of clinically validated biomarkers (EpCAM and CEA), the assay enabled ultrasensitive detection of trace levels of NSCLC-derived exosomes in complex serum samples (15.1 particles µL-1 within a linear range of 102-108 particles µL-1). The assay outperformed the analysis of six serum biomarkers for the accurate diagnosis, staging, and prognosis of NSCLC, displaying a diagnostic sensitivity of 93.3% even at an early stage (Stage I). The assay provides an advanced tool for exosome quantification and facilitates exosome-based liquid biopsies for cancer management in clinics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Electroquímica , Exoma , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Técnicas Biosensibles , Límite de Detección , Análisis Químico de la Sangre/métodos , Análisis Químico de la Sangre/normas , Humanos , Línea Celular Tumoral
7.
Cereb Cortex ; 33(8): 4293-4304, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36030380

RESUMEN

Neocortical vasoactive intestinal polypeptide-expressing (VIP+) interneurons display highly diverse morpho-electrophysiological and molecular properties. To begin to understand the function of VIP+ interneurons in cortical circuits, they must be clearly and comprehensively classified into distinct subpopulations based on specific molecular markers. Here, we utilized patch-clamp RT-PCR (Patch-PCR) to simultaneously obtain the morpho-electric properties and mRNA profiles of 155 VIP+ interneurons in layers 2 and 3 (L2/3) of the mouse somatosensory cortex. Using an unsupervised clustering method, we identified 3 electrophysiological types (E-types) and 2 morphological types (M-types) of VIP+ interneurons. Joint clustering based on the combined electrophysiological and morphological features resulted in 3 morpho-electric types (ME-types). More importantly, we found these 3 ME-types expressed distinct marker genes: ~94% of Sncg+ cells were ME-type 1, 100% of Mybpc1+ cells were ME-type 2, and ~78% of Parm1+ were ME-type 3. By clarifying the properties of subpopulations of cortical L2/3 VIP+ interneurons, this study establishes a basis for future investigations aiming to elucidate their physiological roles.


Asunto(s)
Corteza Somatosensorial , Péptido Intestinal Vasoactivo , Animales , Ratones , Fenómenos Electrofisiológicos , Interneuronas/fisiología , Corteza Somatosensorial/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Proteínas de Neoplasias/metabolismo , gamma-Sinucleína/metabolismo , Proteína de Unión a Andrógenos/metabolismo
8.
Mol Ther ; 31(6): 1615-1635, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36566349

RESUMEN

N6-Methyladenosine (m6A) RNA modification, methylation at the N6 position of adenosine, plays critical roles in tumorigenesis. m6A readers recognize m6A modifications and thus act as key executors for the biological consequences of RNA methylation. However, knowledge about the regulatory mechanism(s) of m6A readers is extremely limited. In this study, RN7SK was identified as a small nuclear RNA that interacts with m6A readers. m6A readers recognized and facilitated secondary structure formation of m6A-modified RN7SK, which in turn prevented m6A reader mRNA degradation from exonucleases. Thus, a positive feedback circuit between RN7SK and m6A readers is established in tumor cells. From findings on the interaction with RN7SK, new m6A readers, such as EWS RNA binding protein 1 (EWSR1) and KH RNA binding domain containing, signal transduction-associated 1 (KHDRBS1), were identified and shown to boost Wnt/ß-catenin signaling and tumorigenesis by suppressing translation of Cullin1 (CUL1). Moreover, several Food and Drug Administration-approved small molecules were demonstrated to reduce RN7SK expression and inhibit tumorigenesis. Together, these findings reveal a common regulatory mechanism of m6A readers and indicate that targeting RN7SK has strong potential for tumor treatment.


Asunto(s)
Carcinogénesis , ARN Nuclear Pequeño , Humanos , ARN Nuclear Pequeño/metabolismo , Retroalimentación , Carcinogénesis/genética , Metilación , Transformación Celular Neoplásica , Vía de Señalización Wnt , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
9.
Mol Carcinog ; 62(4): 464-478, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36585906

RESUMEN

RBM4 has been reported as a tumor suppressor gene in cancers, including lung cancer, colon cancer and gastric cancer. However, the role of RBM4 in clear cell renal cell carcinoma (ccRCC) remains unclear. Therefore, the present study investigated the expression and biological function of RBM4 in ccRCC. Analysis of the differential expression of RBM4 and its relationship with clinicopathological features using ccRCC samples data from TCGA database deminstrated that RBM4 expression in tumor samples of ccRCC was lower than that in normal samples, and RBM4 expression was closely related to the survival time of patients. RBM4 overexpression (RBM4-oe) cell lines were constructed to investigate the effect of RBM4 on biological function using CCK-8, EdU, flow cytometry and wound-healing assays. In addition, the regulatory effect of RBM4 on signaling pathways was investigated by GSEA and WB assays. RBM4-oe significantly reduced the proliferation of ccRCC cells by controlling the p53 signaling pathway, inhibited cell cycle progression and promoted apoptosis. In addition, RBM4-oe suppressed the migration and invasion of cells by EMT. Mechanistically, RBM4-oe facilitated the activity of the p53 signaling pathway by enhancing the stability of p53 mRNA. Finally, RBM4-oe markedly inhibited the growth of tumors formed with 786-O cells in vivo. In summary, there findings suggeated that RBM4 inhibits the progression of ccRCC by promoting p53 signaling pathway activity by enhancing the stability of p53 mRNA, suggesting that RBM4 may be a potential target for the treatment of patients.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Proteína p53 Supresora de Tumor/genética , ARN Mensajero/genética , Proliferación Celular/genética , Neoplasias Renales/patología , Línea Celular Tumoral , Proteínas de Unión al ARN/genética
10.
Neurosci Bull ; 39(7): 1069-1086, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36422797

RESUMEN

Cortical interneurons can be categorized into distinct populations based on multiple modalities, including molecular signatures and morpho-electrical (M/E) properties. Recently, many transcriptomic signatures based on single-cell RNA-seq have been identified in cortical interneurons. However, whether different interneuron populations defined by transcriptomic signature expressions correspond to distinct M/E subtypes is still unknown. Here, we applied the Patch-PCR approach to simultaneously obtain the M/E properties and messenger RNA (mRNA) expression of >600 interneurons in layer V of the mouse somatosensory cortex (S1). Subsequently, we identified 11 M/E subtypes, 9 neurochemical cell populations (NCs), and 20 transcriptomic cell populations (TCs) in this cortical lamina. Further analysis revealed that cells in many NCs and TCs comprised several M/E types and were difficult to clearly distinguish morpho-electrically. A similar analysis of layer V interneurons of mouse primary visual cortex (V1) and motor cortex (M1) gave results largely comparable to S1. Comparison between S1, V1, and M1 suggested that, compared to V1, S1 interneurons were morpho-electrically more similar to M1. Our study reveals the presence of substantial M/E variations in cortical interneuron populations defined by molecular expression.


Asunto(s)
Neocórtex , Ratones , Animales , Neocórtex/fisiología , Ratones Transgénicos , Interneuronas/fisiología
11.
Genomics Proteomics Bioinformatics ; 21(2): 414-426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35940520

RESUMEN

Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification. In this study, we developed Pathogenicity Prediction Tool for missense variants (mvPPT), a highly sensitive and accurate missense variant classifier based on gradient boosting. mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles, and extracts three categories of features, including scores from existing prediction tools, frequencies (allele frequencies, amino acid frequencies, and genotype frequencies), and genomic context. Compared with established predictors, mvPPT achieves superior performance in all test sets, regardless of data source. In addition, our study also provides guidance for training set and feature selection strategies, as well as reveals highly relevant features, which may further provide biological insights into variant pathogenicity. mvPPT is freely available at http://www.mvppt.club/.


Asunto(s)
Biología Computacional , Mutación Missense , Humanos , Virulencia , Genómica , Frecuencia de los Genes
12.
Mater Today Bio ; 17: 100503, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36457846

RESUMEN

A lack of promising targets leads to poor prognosis in patients with lung adenocarcinoma (LUAD). Therefore, it is urgent to identify novel therapeutic targets. The importance of the N6-methyladenosine (m6A) RNA modification has been demonstrated in various types of tumors; however, knowledge of m6A-related proteins in LUAD is still limited. Here, we found that insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), an m6A reader protein, is highly expressed in LUAD and associated with poor prognosis. IGF2BP3 desensitizes ferroptosis (a new form of regulated cell death) in a manner dependent on its m6A reading domain and binding capacity to m6A-methylated mRNAs encoding anti-ferroptotic factors, including but not limited to glutathione peroxidase 4 (GPX4), solute carrier family 3 member 2 (SLC3A2), acyl-CoA synthetase long chain family member 3 (ACSL3), and ferritin heavy chain 1 (FTH1). After IGF2BP3 overexpression, expression levels and mRNA stabilities of these anti-ferroptotic factors were successfully sustained. Notably, significant correlations between SLC3A2, ACSL3, and IGF2BP3 were revealed in clinical LUAD specimens, further establishing the essential role of IGF2BP3 in desensitizing ferroptosis. Inducing ferroptosis has been gradually accepted as an alternative strategy to treat tumors. Thus, IGF2BP3 could be a potential target for the future development of new biomaterial-associated therapeutic anti-tumor drugs.

14.
Transl Oncol ; 26: 101550, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183674

RESUMEN

BACKGROUND: F-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC. METHODS: Comprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts. RESULTS: A risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6. CONCLUSIONS: FBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.

15.
Signal Transduct Target Ther ; 7(1): 176, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35691989

RESUMEN

The apolipoprotein E4 (APOE4) genotype is one of the strongest genetic risk factors for Alzheimer's disease (AD), and is generally believed to cause widespread pathological alterations in various types of brain cells. Here, we developed a novel engineering method of creating the chimeric human cerebral organoids (chCOs) to assess the differential roles of APOE4 in neurons and astrocytes. First, the astrogenic factors NFIB and SOX9 were introduced into induced pluripotent stem cells (iPSCs) to accelerate the induction of astrocytes. Then the above induced iPSCs were mixed and cocultured with noninfected iPSCs under the standard culturing condition of cerebral organoids. As anticipated, the functional astrocytes were detected as early as 45 days, and it helped more neurons matured in chCOs in comparation of the control human cerebral organoids (hCOs). More interestingly, this method enabled us to generate chCOs containing neurons and astrocytes with different genotypes, namely APOE3 or APOE4. Then, it was found in chCOs that astrocytic APOE4 already significantly promoted lipid droplet formation and cholesterol accumulation in neurons while both astrocytic and neuronal APOE4 contributed to the maximum effect. Most notably, we observed that the co-occurrence of astrocytic and neuronal APOE4 were required to elevate neuronal phosphorylated tau levels in chCOs while Aß levels were increased in chCOs with neuronal APOE4. Altogether, our results not only revealed the essence of both neuronal and astrocytic APOE4 for tau pathology, but also suggested chCOs as a valuable pathological model for AD research and drug discovery.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/farmacología , Astrocitos/patología , Humanos , Neuronas/patología , Organoides/patología
16.
Small ; 18(22): e2200784, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35332677

RESUMEN

Circulating microRNAs (miRNAs) can be used as noninvasive biomarkers and are also found circulating in body fluids such as blood. Dysregulated miRNA expression is associated with many diseases, including non-small cell lung cancer (NSCLC), and the miRNA assay is helpful in cancer diagnosis, prognosis, and monitoring. In this work, a versatile electrochemical biosensing system is developed for miRNA detection by DNAzyme-cleavage cycling amplification and hybridization chain reaction (HCR) amplification. With cleavage by Mn2+ targeted DNAzyme, DNA-walker can move along the predesigned DNA tracks and contribute to the transduction and enhancement of signals. For the electrochemical process, the formation of multiple G-quadruplex-incorporated long double-stranded DNA (dsDNA/G-quadruplex) structures is triggered through HCR amplification. The introduction of G-quadruplex allows sensitive measurement of miRNA down to 5.68 fM with good specificity. Furthermore, by profiling miRNA in the NSCLC cohort, this designed strategy shows high efficiency (area under the curve (AUC) of 0.879 using receiver operating characteristic (ROC) analysis) with the sensitivity of 80.0% for NSCLC early diagnosis (stage I). For the discrimination of NSCLC and benign disease, the assay displays an AUC of 0.907, superior to six clinically-acceptable protein tumor markers. Therefore, this platform holds promise in clinical application toward NSCLC diagnosis and prognosis.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , MicroARN Circulante , ADN Catalítico , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , ADN/química , ADN Catalítico/metabolismo , Técnicas Electroquímicas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroARNs/genética
17.
Cancer Commun (Lond) ; 42(4): 287-313, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35184419

RESUMEN

BACKGROUND: Resistance to ferroptosis, a regulated cell death caused by iron-dependent excessive accumulation of lipid peroxides, has recently been linked to lung adenocarcinoma (LUAD). Intracellular antioxidant systems are required for protection against ferroptosis. The purpose of the present study was to investigate whether and how extracellular system desensitizes LUAD cells to ferroptosis. METHODS: Established human lung fibroblasts MRC-5, WI38, and human LUAD H1650, PC9, H1975, H358, A549, and H1299 cell lines, tumor and matched normal adjacent tissues of LUAD, and plasma from healthy individuals and LUAD patients were used in this study. Immunohistochemistry and immunoblotting were used to analyze protein expression, and quantitative reverse transcription-PCR was used to analyze mRNA expression. Cell viability, cell death, and the lipid reactive oxygen species generation were measured to evaluate the responses to ferroptosis. Exosomes were observed using transmission electron microscope. The localization of arachidonic acid (AA) was detected using click chemistry labeling followed by confocal microscopy. Interactions between RNAs and proteins were detected using RNA pull-down, RNA immunoprecipitation and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation methods. Proteomic analysis was used to investigate RNA-regulated proteins, and metabolomic analysis was performed to analyze metabolites. Cell-derived xenograft, patient-derived xenograft, cell-implanted intrapulmonary LUAD mouse models and plasma/tissue specimens from LUAD patients were used to validate the molecular mechanism. RESULTS: Plasma exosome from LUAD patients specifically reduced lipid peroxidation and desensitized LUAD cells to ferroptosis. A potential explanation is that exosomal circRNA_101093 (cir93) maintained an elevation in intracellular cir93 in LUAD to modulate AA, a poly-unsaturated fatty acid critical for ferroptosis-associated increased peroxidation in the plasma membrane. Mechanistically, cir93 interacted with and increased fatty acid-binding protein 3 (FABP3), which transported AA and facilitated its reaction with taurine. Thus, global AA was reduced, whereas N-arachidonoyl taurine (NAT, the product of AA and taurine) was induced. Notably, the role of NAT in suppressing AA incorporation into the plasma membrane was also revealed. In pre-clinical in vivo models, reducing exosome improved ferroptosis-based treatment. CONCLUSION: Exosome and cir93 are essential for desensitizing LUAD cells to ferroptosis, and blocking exosome may be helpful for future LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Exosomas , Ferroptosis , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Animales , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteómica , ARN Circular/genética , Taurina
18.
Clin Transl Med ; 12(2): e747, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35220675

RESUMEN

BACKGROUND: Ferroptosis, a form of regulated cell death, is an important topic in the field of cancer research. However, the signalling pathways and factors that sensitise tumour cells to ferroptosis remain elusive. METHODS: We determined the level of ferroptosis in cells by measuring cell death and lipid reactive oxygen species (ROS) production. The expression of RB1-inducible coiled-coil 1 (RB1CC1) and related proteins was analyzed by immunoblotting and immunohistochemistry. Immunofluorescence was used to determine the subcellular localization of RB1CC1. We investigated the mechanism of RB1CC1 nuclear translocation by constructing a series of RB1CC1 variants. To examine the ferroptosis- and RB1CC1-dependent transcriptional program in tumour cells, chromatin immunoprecipitation sequencing was performed. To assess the effect of c-Jun N-terminal kinase (JNK) agonists on strenthening imidazole ketone erastin (IKE) therapy, we constructed cell-derived xenograft mouse models. Mouse models of hepatocellular carcinoma to elucidate the importance of Rb1cc1 in IKE-based therapy of liver tumourigenesis. RESULTS: RB1CC1 is upregulated by lipid ROS and that nuclear translocation of phosphorylation of RB1CC1 at Ser537 was essential for sensitising ferroptosis in tumour cells. Upon ferroptosis induction, nuclear RB1CC1 sharing forkhead box (FOX)-binding motifs recruits elongator acetyltransferase complex subunit 3 (ELP3) to strengthen H4K12Ac histone modifications within enhancers linked to ferroptosis. This also stimulated transcription of ferroptosis-associated genes, such as coiled-coil-helix-coiled-coil-helix domain containing 3 (CHCHD3), which enhanced mitochondrial function to elevate mitochondrial ROS early following induction of ferroptosis. FDA-approved JNK activators reinforced RB1CC1 nuclear translocation and sensitised cells to ferroptosis, which strongly suggested that JNK is upstream of RB1CC1. Nuclear localisation of RB1CC1 correlated with lipid peroxidation in clinical lung cancer specimens. Rb1cc1 was essential for ferroptosis agonists to suppress liver tumourigenesis in mice. CONCLUSIONS: Our findings indicate that RB1CC1-associated signalling sensitises tumour cells to ferroptosis and that targeting RB1CC1 may be beneficial for tumour treatment.


Asunto(s)
Proteínas Relacionadas con la Autofagia/efectos de los fármacos , Ferroptosis/fisiología , Células Neoplásicas Circulantes/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/farmacología , Modelos Animales de Enfermedad , Ferroptosis/inmunología , Ratones , Especies Reactivas de Oxígeno/metabolismo
19.
J Exp Clin Cancer Res ; 41(1): 36, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078505

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD)  is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. METHODS: Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. RESULTS: The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it's binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. CONCLUSIONS: The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Glucólisis/genética , Neoplasias Pulmonares/genética , Fosfopiruvato Hidratasa/metabolismo , Proteómica/métodos , ARN Mensajero/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis , Modelos Animales de Enfermedad , Humanos , Neoplasias Pulmonares/patología , Ratones , Pronóstico , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...