Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Intervalo de año de publicación
1.
Vet Microbiol ; 293: 110091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626624

RESUMEN

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Asunto(s)
Células Epiteliales , Mastitis Bovina , Fagocitosis , Infecciones Estafilocócicas , Staphylococcus aureus , Proteínas de Unión al GTP rab , Animales , Bovinos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Staphylococcus aureus/fisiología , Femenino , Células Epiteliales/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Mastitis Bovina/microbiología , Glándulas Mamarias Animales/microbiología , Endosomas/metabolismo , Endosomas/microbiología , Lisosomas/metabolismo , Lisosomas/microbiología , Línea Celular , Fagosomas/microbiología
2.
Reprod Domest Anim ; 59(4): e14566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627959

RESUMEN

Early pregnancy loss is a primary cause of low reproductive rates in dairy cows, posing severe economic losses to dairy farming. The accurate diagnosis of dairy cows with early pregnancy loss allows for oestrus synchronization, shortening day open, and increasing the overall conception rate of the herd. Several techniques are available for detecting early pregnancy loss in dairy cows, including rectal ultrasound, circulating blood progesterone, and pregnancy-associated glycoproteins (PAGs). Yet, there is a need to improve on existing techniques and develop novel strategies to identify cows with early pregnancy loss accurately. This manuscript reviews the applications of rectal ultrasound, circulating blood progesterone concentration, and PAGs in the diagnosis of pregnancy loss in dairy cows. The manuscript also discusses the recent progress of new technologies, including colour Doppler ultrasound (CDUS), interferon tau-induced genes (ISGs), and exosomal miRNA in diagnosing pregnancy loss in dairy cows. This study will provide an option for producers to re-breed cows with pregnancy loss, thereby reducing the calving interval and economic costs. Meanwhile, this manuscript might also act as a reference for exploring more economical and precise diagnostic technologies for early pregnancy loss in dairy cows.


Asunto(s)
Enfermedades de los Bovinos , Progesterona , Embarazo , Femenino , Bovinos , Animales , Aborto Veterinario/diagnóstico , Reproducción , Fertilización , Glicoproteínas , Inseminación Artificial/veterinaria , Enfermedades de los Bovinos/diagnóstico
3.
Animals (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254440

RESUMEN

The objective of this study was to develop an indirect ELISA utilizing a polyclonal antibody against bovine rotavirus (BRV) VP6 protein. To achieve this, pcDNA3.1-VP6, a recombinant eukaryotic expression plasmid, was constructed based on the sequence of the conserved BRV gene VP6 and was transfected into CHO-K1 cells using the transient transfection method. The VP6 protein was purified as the coating antigen using nickel ion affinity chromatography, and an indirect ELISA was subsequently established. The study found that the optimal concentration of coating for the VP6 protein was 1 µg/mL. The optimal blocking solution was 3% skim milk, and the blocking time was 120 min. The secondary antibody was diluted to 1:4000, and the incubation time for the secondary antibody was 30 min. A positive result was indicated when the serum OD450 was greater than or equal to 0.357. The coefficients of variation were less than 10% both within and between batches, indicating the good reproducibility of the method. The study found that the test result was positive when the serum dilution was 217, indicating the high sensitivity of the method. A total of 24 positive sera and 40 negative sera were tested using the well-established ELISA. The study also established an indirect ELISA assay with good specificity and sensitivity for the detection of antibodies to bovine rotavirus. Overall, the results suggest that the indirect ELISA method developed in this study is an effective test for detecting such antibodies.

4.
J Fungi (Basel) ; 10(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276034

RESUMEN

Locoweed is a collective name for a variety of plants, such as Oxytropis and Astragalus L. When these plants are infected by some fungi or endophytes, they will produce an alkaloid (swainsonine) that is harmful to livestock. Chronic toxicity characterized by neurological disorders occurs in livestock overfed on locoweed, and swainsonine (SW) is considered a major toxic component. The mechanism of the SW synthesis of endophytic fungi from locoweed remains unknown. In order to further discover the possible synthetic pathway of SW, in this study, a mycotoxin (SW) producer, Alternaria oxytropis isolate, UA003, isolated from Locoweed plants, and its mutant were subjected to transcriptomic analyses to ascertain the genes involved in the synthesis of this toxin. Mutant strain A. oxytropis E02 was obtained by ethyl methanesulfonate (EMS) mutagenesis treatment, and the strains were sequenced with different culture times for transcriptomic analysis and screening of differentially expressed genes. The results show a highly significant (p < 0.01) increase in SW yield in the A. oxytropis E02 strain obtained by EMS mutagenesis treatment compared to A. oxytropis UA003. A total of 637 differentially expressed genes were screened by transcriptome sequencing analysis, including 11 genes potentially associated with SW biosynthesis. These genes were screened using GO and KEGG data annotation and analysis. Among the differential genes, evm.TU.Contig4.409, evm.TU.Contig19.10, and evm.TU.Contig50.48 were associated with L-lysine biosynthesis, the L-pipecolic acid pathway, and the α-aminoadipic acid synthesis pathway. This study provides new insights to elucidate the mechanism of SW synthesis of endophytic fungi in locoweed and provides data support for further exploration of A. oxytropis genomics studies.

5.
Cell Rep Med ; 4(11): 101257, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37918406

RESUMEN

The definitive diagnosis of non-alcoholic steatohepatitis (NASH) currently relies on invasive and labor-intensive liver biopsy. Here, we identified soluble CUB domain-containing protein 1 (sCDCP1) as a top-ranked non-invasive biomarker for NASH using Olink-based proteomics in 238 obese individuals with liver biopsies. Both the circulating concentration and hepatic mRNA abundance of sCDCP1 were significantly elevated in patients with NASH and correlated closely with each histological feature of NASH. In the pooled multicenter validation cohort, sCDCP1 as a standalone biomarker achieved an area under the receiver operating characteristic (AUROC) of 0.838 (95% confidence interval [CI] 0.789-0.887) for diagnosing NASH, which is better than those achieved with cytokeratin-18 and other non-invasive tests. Furthermore, the C-DAG model established by the combination of sCDCP1 with diabetes, aspartate aminotransferase (AST), and gender accurately rules in and rules out both NASH and fibrotic NASH (gray zones <20%). Thus, sCDCP1-based non-invasive tests can be potentially implemented for screening and early diagnosis of NASH and for ruling out low-risk individuals to avoid unnecessary liver biopsies.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Pueblos del Este de Asia , Obesidad/diagnóstico , Biomarcadores , Medición de Riesgo , Antígenos de Neoplasias , Moléculas de Adhesión Celular
6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895011

RESUMEN

Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.


Asunto(s)
Empalme Alternativo , Citrullus , Citrullus/genética , Citrullus/metabolismo , Poliadenilación , Frutas/genética , Frutas/metabolismo , Empalme del ARN , Regulación de la Expresión Génica de las Plantas
7.
J Fungi (Basel) ; 9(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623593

RESUMEN

The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at -656 bp and -392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds.

8.
Front Microbiol ; 14: 1159637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601373

RESUMEN

The changes in the composition of intestinal microbiota and metabolites have been linked to digestive disorders in calves, especially neonatal calf diarrhea. Bovine rotavirus (BRV) and bovine coronavirus (BCoV) are known to be the primary culprits behind neonatal calf diarrhea. In this study, we analyzed changes in the fecal microbiota and metabolites of calves with neonatal diarrhea associated with BRV and BCoV infection using high-throughput 16S rRNA sequencing and metabolomics technology. The microbial diversity in the feces of calves infected with BRV and BCoV with diarrhea decreased significantly, and the composition changed significantly. The significant increase of Fusobacterium and the reductions of some bacteria genera, including Faecalibacterium, Bifidobacterium, Ruminococcus, Subdoligranulum, Parabacteroides, Collinsella, and Olsenella, etc., were closely related to diarrhea associated with BRV and BCoV infection. Metabolites in the feces of BRV and BCoV-infected calves with diarrhea were significantly changed. Phosphatidylcholine [PC; 16:1(9 Z)/16:1(9 Z)], lysophosphatidylethanolamine (LysoPE; 0:0/22:0), lysophosphatidylcholine (LysoPC; P-16:0) and LysoPE (0:0/18:0) were significantly higher in the feces of BRV-infected calves with diarrhea. In contrast, some others, such as desthiobiotin, were significantly lower. BRV infection affects glycerophospholipid metabolism and biotin metabolism in calves. Two differential metabolites were significantly increased, and 67 differential metabolites were significantly reduced in the feces of BCoV-infected calves with diarrhea. Seven significantly reduced metabolites, including deoxythymidylic acid (DTMP), dihydrobiopterin, dihydroneopterin triphosphate, cortexolone, cortisol, pantetheine, and pregnenolone sulfate, were enriched in the folate biosynthesis, pantothenate and CoA biosynthesis, pyrimidine metabolism, and steroid hormone biosynthesis pathway. The decrease in these metabolites was closely associated with increased harmful bacteria and reduced commensal bacteria. The content of short-chain fatty acids (SCFAs) such as acetic acid and propionic acid in the feces of BRV and BCoV-infected calves with diarrhea was lower than that of healthy calves, which was associated with the depletion of SCFAs-producing bacteria such as Parabacteroides, Fournierella, and Collinsella. The present study showed that BRV and BCoV infections changed the composition of the calf fecal microbiota and were associated with changes in fecal metabolites. This study lays the foundation for further revealing the roles of intestinal microbiota in neonatal calf diarrhea associated with BRV and BCoV infection.

9.
Chem Eng J ; 466: 143330, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37193347

RESUMEN

In recent years, with the outbreak and epidemic of the novel coronavirus in the world, how to obtain clean water from the limited resources has become an urgent issue of concern to all mankind. Atmospheric water harvesting technology and solar-driven interfacial evaporation technology have shown great potential in seeking clean and sustainable water resources. Here, inspired by a variety of organisms in nature, a multi-functional hydrogel matrix composed of polyvinyl alcohol (PVA), sodium alginate (SA) cross-linked by borax as well as doped with zeolitic imidazolate framework material 67 (ZIF-67) and graphene owning macro/micro/nano hierarchical structure has successfully fabricated for producing clean water. The hydrogel not only can reach the average water harvesting ratio up to 22.44 g g-1 under the condition of fog flow after 5 h, but also be capable of desorbing the harvested water with water release efficiency of 1.67 kg m-2 h-1 under 1 sun. In addition to excellent performance in passive fog harvesting, the evaporation rate over 1.89 kg m-2 h-1 is attained under 1 sun on natural seawater during long-term. This hydrogel indicates its potential in producing clean water resources in multiple scenarios in different dry or wet states, and which holds great promise for flexible electronic materials and sustainable sewage or wastewater treatment applications.

10.
J Integr Plant Biol ; 65(10): 2336-2348, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37219233

RESUMEN

Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4 . Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4 . Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9'-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4 . Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.


Asunto(s)
Citrullus , Frutas , Frutas/metabolismo , Azúcares/metabolismo , Citrullus/genética , Citrullus/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Ácido Abscísico/metabolismo
11.
Soft comput ; 27(5): 2251-2268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694866

RESUMEN

In recent years, the new type of coronary pneumonia (COVID-19) has become a highly contagious disease worldwide, posing a serious threat to the public health. This paper is based on the SEIR model of the new coronavirus pneumonia, considering the impact of cold chain input and re-positive on the spread of the virus in the COVID-19. In the process of model design, the food cold chain and re-positive are used as parameters, and its stability is analyzed and simulated. The experimental results show that taking into account the cold chain input and re-positive can effectively simulate the spread of the epidemic. The research results have important research value and practical significance for the prevention and control of the COVID-19 and the prediction of important time nodes.

12.
Rev. bras. med. esporte ; 29: e2022_0638, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1423364

RESUMEN

ABSTRACT Introduction: There is empirical evidence that training with bimanual grip can improve tennis's technical and tactical level. However, this practice lacks a scientific study supporting its fundamentals and methodological arguments for effective training. Objective: Investigate the influences of two-handed grip training on balance and motor coordination in tennis players. Methods: The study was conducted by literature data collection, experimental testing, and mathematical statistics. A bimanual grip training protocol was designed and tested on volunteer athletes. Biomarkers were collected, discussed, and analyzed inter- and intra-group statistically. Results: After 5 weeks of basic training, there were significant differences in homeostatic control and physical agility between the experimental and control groups. After training, the dynamic balance ability of the experimental group athletes was significantly improved. Conclusion: The study results show that training, according to the proposed protocol, can benefit athletes' dynamic balance and motor coordination, improving motor coordination and balance in practical sports movements. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.


RESUMO Introdução: Há evidencias empíricas de que o treinamento com empunhadura bimanual pode melhorar o nível técnico e tático na prática esportiva do tênis. Porém, essa prática carece de um estudo científico embasando seus fundamentos e as suas argumentações metodológicas para treinos efetivos. Objetivo: Pesquisar sobre as influências do treinamento da empunhadura bimanual sobre o equilíbrio e a coordenação motora em tenistas. Métodos: O estudo foi conduzido por coleta de dados bibliográficos, teste experimental e estatísticas matemáticas. Um protocolo de treinamento em empunhadura bimanual foi elaborado e testado em atletas voluntários. Os biomarcadores foram coletados, discutidos e analisados inter e intra-grupo estatisticamente. Resultados: Após 5 semanas de treinamento básico, houveram diferenças significativas no controle homeostático e na agilidade física entre os grupos experimental e controle. Após o treinamento, a capacidade de equilíbrio dinâmico dos atletas do grupo experimental foi aprimorada significativamente. Conclusão: Os resultados do estudo mostram que o treinamento, segundo o protocolo proposto, pode beneficiar o equilíbrio dinâmico e a coordenação motora dos atletas, melhorando a coordenação motora e o equilíbrio em movimentos práticos do esporte. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción: Existen evidencias empíricas de que el entrenamiento con mango bimanual puede mejorar el nivel técnico y táctico en la práctica deportiva del tenis. Sin embargo, esta práctica carece de un estudio científico basado en sus fundamentos y en sus argumentos metodológicos para que los entrenamientos sean eficaces. Objetivo: Investigar las influencias del entrenamiento del agarre bimanual sobre el equilibrio y la coordinación motora en tenistas. Métodos: El estudio se llevó a cabo mediante la recopilación de datos bibliográficos, la realización de pruebas experimentales y la estadística matemática. Se diseñó un protocolo de entrenamiento de agarre bimanual y se probó en atletas voluntarios. Los biomarcadores se recogieron, discutieron y se analizaron estadísticamente en inter e intragrupos. Resultados: Tras 5 semanas de entrenamiento básico, hubo diferencias significativas en el control homeostático y la agilidad física entre los grupos experimental y de control. Tras el entrenamiento, la capacidad de equilibrio dinámico de los atletas del grupo experimental mejoró significativamente. Conclusión: Los resultados del estudio muestran que el entrenamiento, según el protocolo propuesto, puede beneficiar el equilibrio dinámico y la coordinación motora de los atletas, mejorando la coordinación motora y el equilibrio en los movimientos deportivos prácticos. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.

13.
Entropy (Basel) ; 24(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36554208

RESUMEN

Air quality has a significant influence on people's health. Severe air pollution can cause respiratory diseases, while good air quality is beneficial to physical and mental health. Therefore, the prediction of air quality is very important. Since the concentration data of air pollutants are time series, their time characteristics should be considered in their prediction. However, the traditional neural network for time series prediction is limited by its own structure, which makes it very easy for it to fall into a local optimum during the training process. The empirical mode decomposition fuzzy forecast model for air quality, which is based on the extreme learning machine, is proposed in this paper. Empirical mode decomposition can analyze the changing trend of air quality well and obtain the changing trend of air quality under different time scales. According to the changing trend under different time scales, the extreme learning machine is used for fast training, and the corresponding prediction value is obtained. The adaptive fuzzy inference system is used for fitting to obtain the final air quality prediction result. The experimental results show that our model improves the accuracy of both short-term and long-term prediction by about 30% compared to other models, which indicates the remarkable efficacy of our approach. The research of this paper can provide the government with accurate future air quality information, which can take corresponding control measures in a targeted manner.

14.
Front Plant Sci ; 13: 1004455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247547

RESUMEN

Folate is commonly synthesized in natural plants and is an essential water-soluble vitamin of great importance inhuman health. Although the key genes involved in folate biosynthesis and transformation pathways have been identified in plants, the genetic architecture of folate in sweet corn kernels remain largely unclear. In this study, an association panel of 295 inbred lines of sweet corn was constructed. Six folate derivatives were quantified in sweet corn kernels at 20 days after pollination and a total of 95 loci were identified for eight folate traits using a genome-wide association study. A peak GWAS signal revealed that natural variation in ZmFCL, encoding a 5-formyltetrahydrofolate cyclo-ligase, accounted for 30.12% of phenotypic variation in 5-FTHF content. Further analysis revealed that two adjacent SNPs on the second exon resulting in an AA-to-GG in the gene and an Asn-to-Gly change in the protein could be the causative variant influencing 5-FTHF content. Meanwhile, 5-FTHF content was negatively correlated with ZmFCL expression levels in the population. These results extend our knowledge regarding the genetic basis of folate and provide molecular markers for the optimization of folate levels in sweet corn kernels.

15.
Front Plant Sci ; 13: 995907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176682

RESUMEN

Ubiquitination-mediated protein degradation plays important roles in ABA signal transduction and delivering responses to chloroplast stress signals in plants, but additional E3 ligases of protein ubiquitination remain to be identified to understand the complex signaling network. Here we reported that ZEITLUPE (ZTL), an F-box protein, negatively regulates abscisic acid (ABA) signaling during ABA-inhibited early seedling growth and ABA-induced stomatal closure in Arabidopsis thaliana. Using molecular biology and biochemistry approaches, we demonstrated that ZTL interacts with and ubiquitinates its substrate, CHLH/ABAR (Mg-chelatase H subunit/putative ABA receptor), to modulate CHLH stability via the 26S proteasome pathway. CHLH acts genetically downstream of ZTL in ABA and drought stress signaling. Interestingly, ABA conversely induces ZTL phosphorylation, and high levels of ABA also induce CHLH proteasomal degradation, implying that phosphorylated ZTL protein may enhance the affinity to CHLH, leading to the increased degradation of CHLH after ABA treatment. Taken together, our results revealed a possible mechanism of reciprocal regulation between ABA signaling and the circadian clock, which is thought to be essential for plant fitness and survival.

16.
Front Plant Sci ; 13: 943153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903240

RESUMEN

MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of electrons from Q A to Q B on the PSII receptor side of Arabidopsis under NaCl stress. Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl stress and decreased Y(NO). These results indicate that MYB37 overexpression increases PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress causes excess electrons and energy in the photosynthetic electron transport chain of Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins under NaCl stress, promote plant growth and improve salt tolerance.

17.
J Integr Plant Biol ; 64(7): 1448-1461, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35568969

RESUMEN

The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.


Asunto(s)
Cucumis melo , Cucurbitaceae , Solanum lycopersicum , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Neural Process Lett ; : 1-22, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35495852

RESUMEN

At present, the Corona Virus Disease 2019 (COVID-19) is ravaging the world, bringing great impact on people's life safety and health as well as the healthy development of economy and society, so the research on the prediction of the development trend of the epidemic is crucial. In this paper, we focus on the prevention and control of epidemic using the relevant technologies in the field of artificial intelligence and signal analysis. With the unknown principle of epidemic transmission, we first smooth out the complex and variable epidemic data through the empirical mode decomposition model to obtain the change trends of epidemic data at different time scales. On this basis, the change trends under different time scales are trained using an extreme learning machine to obtain the corresponding prediction values, and finally the epidemic prediction results are obtained by fitting through Adaptive Network-based Fuzzy Inference System. The experimental results show that the algorithm has good learning ability, especially in the prediction of time-series sequences can guarantee the accuracy rate while having low time complexity. Therefore, this paper not only plays a theoretical support for epidemic prevention and control, but also plays an important role in the construction of public emergency health system in the long run.

19.
Front Plant Sci ; 13: 818392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392508

RESUMEN

Fruit ripening is a highly complicated process, which is modulated by phytohormones, signal regulators and environmental factors playing in an intricate network that regulates ripening-related genes expression. Although transcriptomics is an effective tool to predict protein levels, protein abundances are also extensively affected by post-transcriptional and post-translational regulations. Here, we used RNA sequencing (RNA-seq) and tandem mass tag (TMT)-based quantitative proteomics to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon, a non-climacteric fruit. A total of 6,226 proteins were quantified, and the large number of quantitative proteins is comparable to proteomic studies in model organisms such as Oryza sativa L. and Arabidopsis. Base on our proteome methodology, integrative analysis of the transcriptome and proteome showed that the mRNA and protein levels were poorly correlated, and the correlation coefficients decreased during fruit ripening. Proteomic results showed that proteins involved in alternative splicing and the ubiquitin proteasome pathway were dynamically expressed during ripening. Furthermore, the spliceosome and proteasome were significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, suggesting that post-transcriptional and post-translational mechanisms might play important roles in regulation of fruit ripening-associated genes expression, which might account for the poor correlation between mRNAs and proteins during fruit ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of fruit ripening.

20.
Theor Appl Genet ; 135(5): 1565-1578, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35187585

RESUMEN

KEY MESSAGE: The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon. Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line '302' to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant ('psf'). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in 'psf' which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.


Asunto(s)
Citrullus , Carotenoides/metabolismo , Frutas , Humanos , Isomerasas/genética , Isomerasas/metabolismo , Mutación , Pigmentación/genética , Fitomejoramiento , zeta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...