Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4497, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402335

RESUMEN

Neuropathic pain (NeP) is intractable for which many therapies are ineffective. High-voltage pulsed radiofrequency (HVPRF) on dorsal root ganglion (DRG) is considered an effective treatment for NeP. The aim of this study is to explore the therapeutic voltage for the optimal efficacy of PRF and the underlying mechanisms. The radiofrequency electrode was placed close to the L5 DRG of rats with spared nerve injury (SNI) and emitted current by the corresponding voltage in different groups. Four different voltages (45 V, 65 V, 85 V, and 100 V) of PRF on DRG significantly alleviated the SNI-induced NeP, reduced the levels of activating transcription factor 3 (ATF3) in DRG, improved the ultrastructure of DRG, and promoted autophagy in spinal microglia to varying degrees and partially reversed the increased expression of TNF-α and the reduced expression of IL-10 in spinal cord dorsal horn (SCDH). The beneficial effect of 85V-PRF was superior to those of other three PRF treatments. The underlying mechanisms may be related to repairing the DRG damage and improving the DRG ultrastructure while regulating spinal microglial autophagy and thereby alleviating neuroinflammation.


Asunto(s)
Neuralgia , Tratamiento de Radiofrecuencia Pulsada , Traumatismos del Sistema Nervioso , Ratas , Animales , Ratas Sprague-Dawley , Microglía/metabolismo , Ganglios Espinales/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Traumatismos del Sistema Nervioso/metabolismo , Hiperalgesia/metabolismo
2.
Int Immunopharmacol ; 127: 111419, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38141406

RESUMEN

Evidence indicates that microglial G protein-coupled receptor kinase 2 (GRK2) is a key regulator of the transition from acute to chronic pain mediated by microglial products via the p38 mitogen-activated protein kinase (MAPK) pathway in the spinal cord dorsal horn (SCDH). Increasing studies have shown that autophagic dysfunction in the SCDH and neuroinflammation in the hippocampus underlie NeP. However, whether GRK2/p38MAPK and autophagic flux in the SCDH and hippocampal neuroinflammation are involved in NeP and depression comorbidity has not been determined. Here, we explored the effects of high-voltage pulsed radiofrequency (PRF) (85 V-PRF; HV-PRF) to the dorsal root ganglion (DRG) on pain phenotypes in Wistar male rats with spared nerve injury (SNI) and the underlying mechanisms. The exacerbation of pain phenotypes was markedly relieved by PRF-DRG. The SNI-induced reduction in GRK2 expression, elevation of p-p38 MAPK levels in the SCDH, and increase in IL-1ß and TNF-α levels in the hippocampus were reversed by PRF, which was accompanied by an increase in autophagic flux in spinal microglia. The beneficial effect of 85 V-PRF was superior to that of 45 V-PRF. In addition, the improvements elicited by 85 V-PRF were reversed by intrathecal injection of GRK2 antisense oligonucleotide, and these changes were accompanied by GRK2 downregulation and p-p38 upregulation in the SCDH, increased pro-inflammatory factor levels in the hippocampus, and excessive autophagy in spinal microglia. In conclusion, our data indicate that the application of HV-PRF to the DRG could serve as an excellent therapeutic technique for regulating neuroimmunity and neuroinflammation to relieve pain phenotypes.


Asunto(s)
Neuralgia , Tratamiento de Radiofrecuencia Pulsada , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Neuralgia/metabolismo , Depresión , Manejo del Dolor , Ganglios Espinales/metabolismo , Tratamiento de Radiofrecuencia Pulsada/métodos , Enfermedades Neuroinflamatorias , Ratas Wistar , Hipocampo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Hiperalgesia/metabolismo
3.
Front Mol Neurosci ; 16: 1119164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998510

RESUMEN

Background: Neuropathic pain (NeP) is a pathological condition arising from a lesion or disease affecting the somatosensory system. Accumulating evidence has shown that circular RNAs (circRNAs) exert critical functions in neurodegenerative diseases by sponging microRNAs (miRNAs). However, the functions and regulatory mechanisms of circRNAs as competitive endogenous RNAs (ceRNAs) in NeP remain to be determined. Methods: The sequencing dataset GSE96051 was obtained from the public Gene Expression Omnibus (GEO) database. First, we conducted a comparison of gene expression profiles in the L3/L4 dorsal root ganglion (DRG) of sciatic nerve transection (SNT) mice (n = 5) and uninjured mice (Control) (n = 4) to define the differentially expressed genes (DEGs). Then, critical hub genes were screened by exploring protein-protein interaction (PPI) networks with Cytoscape software, and the miRNAs bound to them were predicted and selected and then validated by qRT-PCR. Furthermore, key circRNAs were predicted and filtered, and the network of circRNA-miRNA-mRNA in NeP was constructed. Results: A total of 421 DEGs were identified, including 332 upregulated genes and 89 downregulated genes. Ten hub genes, including IL6, Jun, Cd44, Timp1, and Csf1, were identified. Two miRNAs, mmu-miR-181a-5p and mmu-miR-223-3p, were preliminarily verified as key regulators of NeP development. In addition, circARHGAP5 and circLPHN3 were identified as key circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these differentially expressed mRNAs and targeting miRNAs were involved in signal transduction, positive regulation of receptor-mediated endocytosis and regulation of neuronal synaptic plasticity. These findings have useful implications for the exploration of new mechanisms and therapeutic targets for NeP. Conclusion: These newly identified miRNAs and circRNAs in networks reveal potential diagnostic or therapeutic targets for NeP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...