Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 243: 114009, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030682

RESUMEN

Microplastics are ubiquitous in soil ecosystems all over the world through source and migration. It is even estimated that the content of microplastics in terrestrial ecosystems exceeds the number of microplastics entering sea ecosystems. However, compared with the research on microplastics in marine ecosystems, the research and discussion on microplastics in soil ecosystems are still less. Transportation, film mulching and sewage sludge are three main sources of soil microplastics. The abundance, polymer type, size and shape of the microplastics are related to the source and they help to clarify the source. The characteristics of microplastics, farming measures, soil animal activities and other factors promote the migration of microplastics, which bring new challenges to the soil ecosystems and humans. This article summarizes the latest research findings on the effects of soil microplasticity on soil properties, plants, animals and microorganisms. The analysis methods of microplastics in soil can refer to the analysis methods of microplastics of aquatic sediments, because soil and aquatic sediments are similar, both of which are complex solid substrates. At present, the development of analytical methods is limited due to the complex matrix of soil and the small volume of microplastics, which requires continuous development and innovation. Through the summary and analysis of related articles, this article reviews the distribution, sources, migration, influence and analysis methods of soil microplastics. This article also critically analyzes the deficiencies in the studies of microplastics in the soil ecosystems, and made some suggestions for future work. The microplastics in soil ecosystems need further research and summary, which will help people further understand the potential hazards of microplastics.


Asunto(s)
Microplásticos , Suelo , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos , Aguas del Alcantarillado
2.
Sci Total Environ ; 850: 157969, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985575

RESUMEN

Human activities have given rise to metal contamination in the constituents of mangrove ecosystems, posing a critical threat to sediment microorganisms; hence, it is of great importance to comprehend the effects of metals on the microbial communities in mangrove sediments. This study was the first to explore the response of the bacterial diversity and community structure to nine metals (As, Co, Cr, Cu, Mn, Ni, Pb, V and Zn) and organic matter fractions (including total organic carbon (TOC), total nitrogen (TN), and total sulfur (TS)) in mangrove wetlands from Zhanjiang, China, using 16S rRNA high-throughput sequencing technology and Spearman correlation analysis. The results showed that these nine metals were scattered differently in different mangrove sediments, and the metals and organic matter fractions jointly affected the bacterial communities in the sediments. Several metals displayed significant positive correlations with the abundances of the phylum Bacteroidetes and the genera Actibacter and Sphingobacterium but significant negative correlations with the abundances of two genera Holophaga and Caldithrix. Furthermore, the abundances of the phylum Actinobacteria and many bacterial genera showed significant positive or negative responses to the levels of the three organic matter fractions. Interestingly, the levels of a number of bacterial genera that exhibited increased abundance with high levels of metals and TS might be reduced with high TOC and TN, and vice versa: the levels of genera that exhibited decreased abundance with high levels of metals and TS might be increased with high TOC and TN. Overall, many bacterial groups showed different response patterns to each metal or organic matter fraction, and these metals together with organic matter fractions influenced the bacterial diversity and community structure in mangrove sediments.


Asunto(s)
Metales Pesados , Microbiota , Bacterias , Carbono/análisis , China , Sedimentos Geológicos/química , Humanos , Plomo/análisis , Metales Pesados/análisis , Nitrógeno/análisis , ARN Ribosómico 16S/genética , Azufre/análisis , Humedales
3.
Anal Methods ; 14(17): 1671-1677, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35420072

RESUMEN

The enhancement of chemiluminescence (CL) intensity is significant in the development of chemiluminescent detection systems with improved sensitivity. In this study, a cationic surfactant with an intrinsic aggregation-induced emission emitter (AIEgen) has been applied to boost the CL signal of the horseradish peroxidase-luminol-H2O2 system. The formed cationic AIEgen micelles enhance the CL signal in two ways: the electrostatic attraction-mediated enrichment and approach of reactants and the high CRET efficiency between excited luminol radicals and AIEgen in the surfactant backbone. As a result, strong CL intensity is produced. Rapid and sensitive H2O2 detection is realized through the proposed cationic AIEgen micelle-containing chemiluminescent system with a limit of detection of 100 nM. The favourable selectivity over other possible interferents including metal ions and anions is due to the specific chemical reaction. Practical H2O2 analysis of thawing water samples with high accuracy using the proposed chemiluminescent platform is realized and is consistent with standard methods.


Asunto(s)
Luminol , Micelas , Peróxido de Hidrógeno/análisis , Mediciones Luminiscentes/métodos , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA