Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(2): 846-862, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37533135

RESUMEN

Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.


Asunto(s)
Oryza , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol ; 192(1): 222-239, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36756804

RESUMEN

Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.


Asunto(s)
Muerte Celular , Eragrostis , Grano Comestible/genética , Eragrostis/genética , Semillas/genética
3.
Plant Physiol ; 189(2): 715-734, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35285930

RESUMEN

Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.


Asunto(s)
Setaria (Planta) , Zea mays , Ácidos Indolacéticos/metabolismo , Inflorescencia , Meristema/metabolismo , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Zea mays/metabolismo
4.
J Bone Miner Res ; 37(4): 764-775, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080046

RESUMEN

Vertebrate lonesome kinase (Vlk) is a secreted tyrosine kinase important for normal skeletogenesis during embryonic development. Vlk null mice (Vlk-/- ) are born with severe craniofacial and limb skeletal defects and die shortly after birth. We used a conditional deletion model to remove Vlk in limb bud mesenchyme (Vlk-Prx1 cKO) to assess the specific requirement for Vlk expression by skeletal progenitor cells during endochondral ossification, and an inducible global deletion model (Vlk-Ubq iKO) to address the role of Vlk during fracture repair. Deletion of Vlk with Prx1-Cre recapitulated the limb skeletal phenotype of the Vlk-/- mice and enabled us to study the postnatal skeleton as Vlk-Prx1 cKO mice survived to adulthood. In Vlk-Prx1 cKO adult mice, limbs remained shorter with decreased trabecular and cortical bone volumes. Both Vlk-Prx1 cKO and Vlk-Ubq iKO mice had a delayed fracture repair response but eventually formed bridging calluses. Furthermore, levels of phosphorylated osteopontin (OPN) were decreased in tibias of Vlk-Ubq iKO, establishing OPN as a Vlk substrate in bone. In summary, our data indicate that Vlk produced by skeletal progenitor cells influences the timing and extent of chondrogenesis during endochondral bone formation and fracture repair. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Condrogénesis , Osteogénesis , Animales , Huesos , Condrogénesis/genética , Extremidades , Ratones , Ratones Noqueados , Osteogénesis/genética , Proteínas Tirosina Quinasas
5.
Front Plant Sci ; 12: 710383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671369

RESUMEN

In this work, we sequenced and annotated the genome of Streptochaeta angustifolia, one of two genera in the grass subfamily Anomochlooideae, a lineage sister to all other grasses. The final assembly size is over 99% of the estimated genome size. We find good collinearity with the rice genome and have captured most of the gene space. Streptochaeta is similar to other grasses in the structure of its fruit (a caryopsis or grain) but has peculiar flowers and inflorescences that are distinct from those in the outgroups and in other grasses. To provide tools for investigations of floral structure, we analyzed two large families of transcription factors, AP2-like and R2R3 MYBs, that are known to control floral and spikelet development in rice and maize among other grasses. Many of these are also regulated by small RNAs. Structure of the gene trees showed that the well documented whole genome duplication at the origin of the grasses (ρ) occurred before the divergence of the Anomochlooideae lineage from the lineage leading to the rest of the grasses (the spikelet clade) and thus that the common ancestor of all grasses probably had two copies of the developmental genes. However, Streptochaeta (and by inference other members of Anomochlooideae) has lost one copy of many genes. The peculiar floral morphology of Streptochaeta may thus have derived from an ancestral plant that was morphologically similar to the spikelet-bearing grasses. We further identify 114 loci producing microRNAs and 89 loci generating phased, secondary siRNAs, classes of small RNAs known to be influential in transcriptional and post-transcriptional regulation of several plant functions.

6.
Dis Markers ; 2021: 8867368, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628340

RESUMEN

The present study is aimed at examining the serum levels of brain-derived neurotrophic factor (BDNF) and investigating its role in differential diagnosis of colorectal cancer (CRC). Materials and Methods. In a Chinese population, we conducted a case-control study to compare the diagnostic performance of serum levels of BDNF and carcinoembryonic antigen (CEA) for CRC. We enrolled 61 healthy controls, 31 patients with adenomas, and 81 patients with CRC. We explored the correlation between serum levels of BDNF and several pathological features, such as tumor differentiation and TNM staging. Results. The serum levels of BDNF were significantly (p < 0.0001) higher in patients with CRC (10.64 ± 3.84, n = 81) than in the healthy controls (4.69 ± 1.69 ng/mL, n = 61). Serum BDNF also correlated with tumor size, tumor differentiation, and TNM staging (p < 0.05). For early diagnosis, the combination of BDNF (AUC 0.719; 95% CI, 0.621-0.816) and CEA (AUC 0.733; 95% CI, 0.632-0.909) slightly improved the diagnostic performance for CRC (AUC 0.823; 95% CI, 0.737-0.909). Conclusions. Combined detection of serum BDNF and CEA may thus have the potential to become a new laboratory method for the early clinical diagnosis of CRC.


Asunto(s)
Adenoma/diagnóstico , Biomarcadores de Tumor/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Antígeno Carcinoembrionario/genética , Neoplasias Colorrectales/diagnóstico , Adenoma/sangre , Adenoma/genética , Adenoma/patología , Anciano , Área Bajo la Curva , Biomarcadores de Tumor/sangre , Factor Neurotrófico Derivado del Encéfalo/sangre , Antígeno Carcinoembrionario/sangre , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Carga Tumoral
8.
Nat Biotechnol ; 38(10): 1203-1210, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020633

RESUMEN

Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.


Asunto(s)
Genoma de Planta/genética , Mijos/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Alelos , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Elementos Transponibles de ADN/genética , Domesticación , Grano Comestible/genética , Edición Génica , Genotipo , Fenotipo , Filogenia
9.
Plant Cell ; 32(11): 3500-3518, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32873633

RESUMEN

Sorghum (Sorghum bicolor) and its relatives in the grass tribe Andropogoneae bear their flowers in pairs of spikelets in which one spikelet (seed-bearing or sessile spikelet [SS]) of the pair produces a seed and the other is sterile or male (staminate). This division of function does not occur in other major cereals such as wheat (Triticum aestivum) or rice (Oryza sativa). Additionally, one bract of the SS spikelet often produces a long extension, the awn, that is in the same position as, but independently derived from, that of wheat and rice. The function of the sterile spikelet is unknown and that of the awn has not been tested in Andropogoneae. We used radioactive and stable isotopes of carbon, RNA sequencing of metabolically important enzymes, and immunolocalization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to show that the sterile spikelet assimilates carbon, which is translocated to the largely heterotrophic SS. The awn shows no evidence of photosynthesis. These results apply to distantly related species of Andropogoneae. Removal of sterile spikelets in sorghum significantly decreases seed weight (yield) by ∼9%. Thus, the sterile spikelet, but not the awn, affects yield in the cultivated species and fitness in the wild species.


Asunto(s)
Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Sorghum/fisiología , Andropogon/fisiología , Carbono/metabolismo , Radioisótopos de Carbono , Regulación de la Expresión Génica de las Plantas , Marcaje Isotópico , Malatos/metabolismo , Células del Mesófilo , Fotosíntesis/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Poaceae/crecimiento & desarrollo , Poaceae/fisiología , Análisis de Secuencia de ARN , Sorghum/crecimiento & desarrollo
10.
Neurotox Res ; 38(4): 1063, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32948991

RESUMEN

Dr. Chang-Qi Li should be added as co-author because Fig. 1 originated from him.

12.
Neurotox Res ; 38(4): 887-899, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32588356

RESUMEN

Major depressive disorders (MDD) are often comorbid with the gastrointestinal (GI) disorders. Brain-derived neurotrophic factor precursor (proBDNF) has been reported to contribute to the development of depression in mouse models. However, the role of proBDNF in depression-associated GI disorders is still unrevealed. Mice experienced unpredictable chronic mild stress (UCMS) procedure and were then intraperitoneally injected with fluoxetine (20 mg/kg). Open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were performed to evaluate the severity of depression. Oral administration of food dye gel and histological staining were performed to assess GI transit and morphological alterations. QPCR was performed to assess the mRNA levels of inflammatory cytokines. Additionally, flow cytometry, immunohistochemistry, and immunofluorescence were performed to examine the expression and cellular localization of proBDNF. It was found that (a) in the peripheral blood, the expression of proBDNF and its receptor pan neurotrophin receptor 75 (p75NTR) in CD11b+ cells in depressive mice was higher than in controls; (b) the GI motility was decreased after the UCMS procedure and partly reversed by fluoxetine treatment; (c) proBDNF/p75NTR was highly expressed in macrophages in the intestinal lamina propria; (d) the upregulated proBDNF/p75NTR and the activated cytokines, including IL (interleukin)-1ß, IL-6, IL-10, and IFN (interferon)-γ, were positively correlated with the depression and GI disorders, and were inhibited by fluoxetine treatment. UCMS procedure upregulated the expression of proBDNF and p75NTR in monocytes/macrophages of peripheral blood and intestinal lamina propria, which may be involved in the pathogenesis of depression-associated GI disorders. Fluoxetine reversed the GI dysfunction, infiltration of macrophages, and upregulation of proBDNF signaling in the depressive mice.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Trastorno Depresivo Mayor/metabolismo , Enfermedades Gastrointestinales/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Precursores de Proteínas/biosíntesis , Animales , Antidepresivos de Segunda Generación/farmacología , Antidepresivos de Segunda Generación/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/psicología , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/psicología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
15.
Am J Bot ; 107(4): 549-561, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32207156

RESUMEN

PREMISE: Abscission zones (AZ) are specialized cell layers that separate plant parts at the organ junction upon developmental or environmental signals. Fruit or seed abscission has been well studied in model species because of its crucial role for seed dispersal. Previous work showed that AZ localization differs among species of Poaceae and that AZ formation is histologically and genetically distinct in three distantly related grass species, refuting the idea of a broadly conserved module. However, whether AZ structure is consistent within subfamilies is unknown. METHODS: Eleven species were selected from six subfamilies of Poaceae, and their AZ was investigated using paraffin-embedded, stained material. Observations were added from the literature for an additional six species. Data were recorded on AZ location and whether cells in the AZ were distinguishable by size or lignification. Characteristics of the AZ were mapped on the phylogeny using maximum likelihood. RESULTS: Abscission zone anatomy and histology vary among species, and characteristics of the AZ do not correlate with phylogeny. Twelve of the seventeen studied species have an AZ in which the cells are significantly smaller than surrounding cells. Of these, eight have differential lignification. Differential lignification is often associated with differential cell size, but not vice versa. CONCLUSIONS: Neither smaller cells in the AZ nor differential lignification between the AZ and surrounding cells is required for abscission, although differential cell size and lignification are often correlated. Abscission zone anatomy does not correlate with phylogeny, suggesting its rapid change over evolutionary time.


Asunto(s)
Poaceae , Dispersión de Semillas , Evolución Biológica , Frutas , Regulación de la Expresión Génica de las Plantas , Filogenia
16.
RNA ; 26(4): 492-511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31937672

RESUMEN

Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.


Asunto(s)
ARN Mensajero/química , Tolerancia a la Sal , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Arabidopsis , Conformación de Ácido Nucleico , Especificidad de Órganos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
18.
New Phytol ; 225(4): 1799-1815, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31372996

RESUMEN

Abscission is a process in which plants shed their parts, and is mediated by a particular set of cells, the abscission zone (AZ). In grasses (Poaceae), the position of the AZ differs among species, raising the question of whether its anatomical structure and genetic control are conserved. The ancestral position of the AZ was reconstructed. A combination of light microscopy, transmission electron microscopy, RNA-Seq analyses and RNA in situ hybridisation were used to compare three species, two (weedy rice and Brachypodium distachyon) with the AZ in the ancestral position and one (Setaria viridis) with the AZ in a derived position below a cluster of flowers (spikelet). Rice and Brachypodium are more similar anatomically than Setaria. However, the cell wall properties and the transcriptome of rice and Brachypodium are no more similar to each other than either is to Setaria. The set of genes expressed in the studied tissues is generally conserved across species, but the precise developmental and positional patterns of expression and gene networks are almost entirely different. Transcriptional regulation of AZ development appears to be extensively rewired among the three species, leading to distinct anatomical and morphological outcomes.


Asunto(s)
Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes , Oryza/metabolismo , Setaria (Planta)/metabolismo , Brachypodium/genética , Oryza/genética , Filogenia , Tallos de la Planta/fisiología , Setaria (Planta)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...