Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264101

RESUMEN

Incineration is a promising sustainable treatment method for solid waste. However, the ongoing revelation of new toxic pollutants in this process has become a controversial issue impeding its development. Thus, identifying and regulating high-risk pollutants emerge as pivotal strides toward reconciling this debate. In this study, we proposed a workflow aimed at establishing priority monitoring inventories for organic compounds emitted by industries involving full-component structural recognition, environmental behavior prediction, and emission risk assessment, specifically focusing on solid waste incineration (SWI). A total of 174 stack gas samples from 29 incinerators were first collected. Nontarget full organic recognition technology was then deployed to analyze these samples, and 646 organic compounds were identified. The characteristics, i.e., toxicity effects, toxicity concentrations, persistence, and bioaccumulation potential, of these compounds were assessed and ranked based on the TOXCAST database from the US Environmental Protection Agency and structural effect models. Combined with consideration of changes in seasons and waste types, a priority control inventory consisting of 28 organic pollutants was finally proposed. The risks associated with SWI across different regions in China and various countries were assessed, and results pinpointed that by controlling the priority pollutants, the average global emission risk attributed to SWI was anticipated to be reduced by 71.4%. These findings offer significant guidance for decision-making in industrial pollutant management, emphasizing the importance of targeted regulation and monitoring to enhance the sustainability and safety of incineration processes.

2.
J Hazard Mater ; 469: 133861, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430596

RESUMEN

Microplastics have garnered global attention due to their potential ecological risks. Research shows micro/nano-plastics pollution has adverse effects on plant growth, development, and physiological characteristics. However, the mechanisms underlying these effects remain unclear. The study examined the effects of polystyrene micro/nano-plastics with varying sizes and concentrations on different physiological and biochemical markers of A. thaliana. The indicators assessed include seed viability, growth, chlorophyll content, accumulation of root reactive oxygen species, and root exudates. Using fluorescence labeling, we investigated the absorption and translocation processes of micro/nano-plastics in A. thaliana. We also performed transcriptomic analysis to better understand the particular mechanisms of micro/nano-plastics. It indicated that micro/nano-plastics had an adverse effect on seed germination, especially under high concentration and small particle size treatments. This effect diminished with prolonged exposure. High concentrations at 50 nm and 100 nm treatment groups significantly inhibited the growth. Conversely, low concentrations of 1000 nm had a promoting effect. Exposure to micro/nano-plastics potentially resulted in decreased chlorophyll content, the accumulation of H2O2 in roots, and stimulated root secretion of oxalic acid. Through transcriptomic analysis, the gene expression linked to micro/nano-plastic treatments of varying sizes enriched multiple metabolic pathways, impacting plant growth, development, environmental adaptation, metabolism, pigment synthesis, and stress response.


Asunto(s)
Arabidopsis , Poliestirenos , Poliestirenos/toxicidad , Microplásticos/toxicidad , Plásticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrógeno , Clorofila
4.
Environ Pollut ; 288: 117821, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329043

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors and Corresponding Author. The authors have plagiarized part of a paper that had already appeared in Environmental and Experimental Botany, 179 (2020) 104227, https://doi.org/10.1016/j.envexpbot.2020.104227. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA