Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(1): 107-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36799383

RESUMEN

To determine the optimal planting density under wide-width sowing condition, we investigated the effects of different planting densities on photosynthetic characteristics of flag leaves, senescence characteristics of flag lea-ves and roots, grain yield, and water use efficiency under four planting density levels, 90×104 plants·hm-2 (D1), 180×104 plants·hm-2 (D2), 270×104 plants·hm-2 (D3) and 360×104 plants·hm-2 (D4), in field condition set in Yanzhou, Shandong during the growing season of 2018-2019 and 2019-2020. The results showed that compared with D1 and D4 treatments, D2 treatment significantly improved photosynthetic characteristics of wheat flag leaves during grain filling, increased the activity of superoxide dismutase (SOD) and soluble protein content, reduced the malondialdehyde (MDA) content, and delayed the senescence of flag leaves and roots. Compared with other treatments, D2 treatment significantly increased root length, root surface area and root volume in 0-40 cm soil layer. Compared with D1, D3 and D4 treatments, the grain yield of D2 treatment was increased by 11.8%, 2.5%, 6.4% in 2018-2019 and 22.7%, 5.7%, 17.1% in 2019-2020, respectively. In addition, water use efficiency was increased by 9.2%, 8.8%, 14.2% in 2018-2019 and 21.1%, 6.2%, 21.5% in 2019-2020, respectively. The planting density at 180×104 plants·hm-2 improved photosynthetic characteristics of flag leaves and root morphology during filling stage, delayed plant senescence, increased grain number per spike and grain weight. Consequently, the highest grain yield and water use efficiency were obtained under D2 treatment, which was the optimal treatment under the experimental wide-width sowing condition.


Asunto(s)
Agricultura , Fotosíntesis , Agricultura/métodos , Suelo , Agua , Hojas de la Planta , Grano Comestible , Biomasa
2.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3745-3752, 2019 Nov.
Artículo en Chino | MEDLINE | ID: mdl-31833687

RESUMEN

To clarify the differences in light energy utilization and distribution characteristics of flag leaf 13C assimilate in different spike-type wheat varieties and their responses to supplementary irrigation, we set three water treatments in a field experiment, including no irrigation during growth duration of wheat (W0), water-saving irrigation (W1, irrigating at jointing and anthesis of wheat to keep the relative moisture of 0-40 cm soil to 65% and 70%), full irrigation (W2, irrigating at jointing and anthesis of wheat to keep the relative moisture of 0-40 cm soil to 85% and 90%) with the medium-spike wheat cultivars Jimai 22 and Qingnong 2, large-spike wheat cultivars Shannong 23 and Shannong 30 as test materials. The effects of different water treatments on canopy light energy utilization and 13C assimilate distribution characteristics of two spike-type wheat varieties were examined. The results showed that leaf area index, canopy light interception rate, and light energy utilization rate of the two varieties at 2, 11, 20 and 31 days after anthesis were significantly higher than W0 treatment, but there was no significant change in each index when the irrigation increased to W2 treatment. The distribution of flag leaf 13C assimilates of Jimai 22 and Shannong 23 of W1 in grain was 159.34 and 171.1 g·hm-2 higher than W0, respectively, and the distribution ratio was 6.5% and 6.5%, with no significant difference compared with W2. The grain yields of both varieties under W1 were significantly higher than that under W0, but with no significant difference with W2. Under water-saving irrigation, the medium-spike cultivars had higher canopy photosynthetically active radiation interception and utilization ability at 2 and 11 days after anthesis and large-spike cultivars at 20 and 31 days after anthesis. The distribution amount and ratio of 13C assimilates in the grain of medium-spike variety Jimai 22 flag leaf were 6.8% and 2.7% lower than that of the large-spike variety Shannong 23.


Asunto(s)
Riego Agrícola , Triticum , Biomasa , Hojas de la Planta , Suelo , Agua
3.
Ying Yong Sheng Tai Xue Bao ; 30(4): 1170-1178, 2019 Apr.
Artículo en Chino | MEDLINE | ID: mdl-30994277

RESUMEN

In two growing seasons of wheat (2016-2018), a field trial with Jimai 22 as test mate-rial was conducted in Shijiawangzi Village, Yanzhou City, Shandong Province. Under three nitrogen levels of 150 (N1), 180 (N2) and 210 (N3) kg·hm-2, two irrigation-fertilization methods were designed at jointing as border irrigation and broadcasting of fertilizer (W1), micro spraying irrigation and water-fertilizer integration (W2), to examine the effects of irrigation-fertilization methods on water use, photosynthetic characteristics, and dry matter accumulation and transport of wheat. The results showed that under the same nitrogen level, seven days average soil evaporation of W2 treatment in filling period was significantly lower than that of W1 treatment, and that soil water consumption in the 60-160 cm soil layer was significantly higher than that in W1 treatment. The flag leaf net photosynthetic rate, stomatal conductance and transpiration rate of W2 treatment were signi-ficantly higher than W1 treatment from 14 to 28 days after anthesis. The amount of dry matter in anthesis and maturity stage and the allocation to grain of post-anthesis assimilates of W2 treatment were significantly higher than those in W1 treatment. There was no difference in total water consumption between W2 and W1 treatments. Grain yield, water use efficiency and nitrogen use efficiency of W2 treatment were significantly higher than W1 treatment. The highest grain yield, water use efficiency and nitrogen use efficiency were obtained at the nitrogen level of 210 kg·hm-2. By comprehensive considerations, under the same nitrogen level, treatment of micro spraying irrigation and water-fertilizer integration was better than border irrigation and broadcasting of fertilizer. The W2N3 treatment under the nitrogen level of 210 kg·hm-2 and with the application of micro spraying irrigation and water-fertilizer integration at jointing was the optimal treatment to save water and fertilizer.


Asunto(s)
Agricultura/métodos , Fertilizantes , Triticum/fisiología , Riego Agrícola , Biomasa , Nitrógeno , Fotosíntesis/fisiología , Estaciones del Año
4.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3625-3633, 2018 Nov.
Artículo en Chino | MEDLINE | ID: mdl-30460809

RESUMEN

To explore the optimal hose length of micro-sprinkling hose irrigation in wheat fields, a field trial taking JiMai 22 as test material was carried out in two growing seasons (2015-2016 and 2016-2017). Three lengths of micro-sprinkling hoses with 80-mm width were used, including 60 m (T1), 80 m (T2) and 100 m (T3). The length of trial plot was equal to the hose length. The trial plots were divided to different sample sections every 20-m length along the irrigation direction, which were named as A, B, C, D and E sections, respectively, to examine the effects of micro-sprinkling hose irrigations with different hose lengths on soil water distribution, dry matter accumulation and grain yield of wheat fields. The results showed that: 1) After irrigation at the jointing and anthesis stages in the two growing seasons, the relative soil water content in the 0-40 cm soil layer showed T1T2, T3 in the C section and T2>T3 in the D section. The CV of relative soil water content in different sections in the same treatment showed T1T2, T3 in the C section and T2>T3 in the D section. Leaf area index and rate of canopy photosynthesis active radiation interception at 20 d and 30 d after anthesis and dry matter accumulation amount after anthesis showed T1, T2>T3, and dry matter accumulation amount at the maturity stage showed T1> T2>T3. 3) In the two growing seasons, grain yield in the A and B sections had no significant differences among different treatments, and that showed T1>T2, T3 in the C section and T2>T3 in the D section. Grain yield of each treatment showed T1, T2>T3. 4) The grain yield and water use efficiency showed T1> T2>T3, and the irrigation water use efficiency showed T1>T2>T3 among different treatments in the two growing seasons. Considering grain yield and water use efficiency, hose irrigation with micro-sprinkling hose at 80-mm width and 60-m length was optimal treatment for water-saving and high-yield irrigation, and the suboptimal length was 80 m under this condition. The results could provide theoretical basis for water-saving and high-yield irrigation with micro-sprinkling hose in wheat fields in Shandong Province.


Asunto(s)
Riego Agrícola/métodos , Triticum/crecimiento & desarrollo , Biomasa , Grano Comestible , Suelo , Agua
5.
Ying Yong Sheng Tai Xue Bao ; 29(2): 531-537, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29692068

RESUMEN

With the large-spike wheat cultivar Shannong 23 as test material,a field experiment was conducted by increasing the relative soil moisture content to 70% and 65% at jointing and anthesis stages. Four nitrogen levels,0 (N0), 180 (N1), 240 (N2) and 300 kg·hm-2(N3), were designed to examine the effects of nitrogen application rates on the interception of photosynthetic active radiation (PAR) and dry matter distribution of wheat at different canopy layers. The results showed that the total stem number of wheat population at anthesis stage, the leaf area index at 10, 20 and 30 days after anthesis, PAR capture ratio at upper and middle layers and total PAR capture ratio in wheat canopy on day 20 after anthesis of treatment N2 were significantly higher than those in the treatments of both N0 and N1. Those indexes showed no significant increase when the application rate increased to 300 kg·hm-2(N3). The vegetative organ dry matter accumulation of all layers at maturity stage of treatment N2 were significantly higher than N0 and N1. Compared with treatment N0 and N1, N2 increased the grain and total dry matter accumulation by 36.7% and 35.4%, 9.5% and 10.2%, respectively, but had no significant difference with treatment N3. The vegetative organ dry matter accumulation at all layers, grain and total dry matter accumulation were significantly and positively correlated with PAR capture ratio at upper and middle layers, and had no significant correlation with that at lower layer. The vegetative organ dry matter accumulation at all layers was significantly and positively correlated with grain dry matter accumulation. The application rate at 240 kg·hm-2(N2) would be the optimum treatment under the present experimental condition.


Asunto(s)
Nitrógeno , Triticum/crecimiento & desarrollo , Riego Agrícola , Biomasa , Suelo , Agua
6.
Ying Yong Sheng Tai Xue Bao ; 28(11): 3599-3609, 2017 Nov.
Artículo en Chino | MEDLINE | ID: mdl-29692103

RESUMEN

A two-year field experiment was conducted in 2014-2015 and 2015-2016 wheat growing seasons to study the effects of micro-sprinkling hose length and width on field water condition, and flag leaf chlorophyll fluorescence characteristics in different sampling districts (D1 to D6 along with the hose laying direction). Six micro-sprinkling hose treatments were set: 60 m (T1), 80 m (T2) and 100 m (T3) lengths under 65 mm width; 60 m (T4), 80 m (T5) and 100 m (T6) lengths under 80 mm width. The results showed that after irrigation at jointing, the Christiansen uniformity coefficient (Cu) of T1 was significantly higher than T2 and T3 under 65 mm hose width. Under 80 mm hose width, T4 and T5 had the highest Cu compared to T6. After irrigation at anthesis, the Cu showed T1>T2>T3 under 65 mm hose width, and T4>T5>T6 under 80 mm hose width. Under 65 mm hose width, the average relative soil water content of 0-40 cm soil layers after irrigation at anthesis, flag leaf ΦPSII, NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling district did not differ in T1; T2 showed the order of D1, D2>D3>D4>D5; T3 showed D1, D2>D3>D4>D5, D6. The average ΦPSII, NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different sampling districts were presented as T1>T2, T3. Under 85 mm hose width, no significant differences were observed in the average relative soil water content of 0-40 cm soil layers after irrigation at ahthesis, flag leaf ΦPSII, NPQ and ETR at 20 and 30 d after anthesis and the grain yield of different sampling districts in T4; in T5, the indexes mentioned above in D1, D2 and D3 sampling districts were significantly higher than those in D4 and D5; in T6, the decreasing order was D1, D2, D3>D4>D5>T6. The average ΦPSII, NPQ and ETR at 20 and 30 d after anthesis, and the average dry matter at maturity of different districts showed the order of T4, T5>T6. The ave-rage grain yield and water use efficiency of T1, T4 and T5 were significantly higher than those in T2, T3 and T6, T1 and T4 had a better irrigation benefit than T5. Under this experimental condition, T1 treatment under 65 mm hose width, T4 treatment under 80 mm hose width were the most recommendable treatments considering high yield and water saving, and T5 treatment was also recommendable under 80 mm hose width.


Asunto(s)
Riego Agrícola , Clorofila , Fotosíntesis , Triticum , Biomasa , Fluorescencia , Agua
7.
Ying Yong Sheng Tai Xue Bao ; 28(3): 877-884, 2017 Mar 18.
Artículo en Chino | MEDLINE | ID: mdl-29741015

RESUMEN

Field experiments were conducted during 2013-2014 and 2014-2015 winter wheat growing seasons by using Jimai 22 as test material. Five treatments were designed: W0(non-irrigation during growth season), W1(non-irrigation at overwintering, but irrigated to 65% of field capacity (FC) at jointing and 70% of FC at anthesis in 0-40 cm soil layer), W2(irrigated to 70% of FC at overwintering, 65% of FC at jointing and 70% of FC at anthesis in 0-40cm soil layer, respectively) and W3(irrigated to 75% of FC at overwintering, 65% of FC at jointing and 70% of FC at anthesis in 0-40cm soil layer, respectively), W4(irrigated 60 mm at overwintering, jointing and anthesis stages, respectively). The aim was to clarify the effects of supplemental irrigation on water consumption characteristics and photosynthetically active radiation utilization in wheat. Results showed that the total irrigation amount and its ratio to total water consumption in each treatment were ranked as W4>W3>W2>W1>W0. However, the percentage of water consumption in soil to total water consumption was presented as W0>W1, W2>W3, W4. The total water consumption, water consumption from anthesis to maturity were ranked as W4>W2, W3>W1>W0. The order of photosynthetically active radiation (PAR) capture ratio was W4>W2, W3>W1>W0, but the order was contrary in PAR reflect ratio among the treatments. The net accumulation of dry matter was ranked as W4>W2>W3>W1>W0 in the two growing seasons. During the two winter wheat growing seasons, the grain yield in W2 was higher than in the other treatments, except W4, but the irrigation efficiency and water use efficiency in W2 were the highest. Concerning both the high-yield and high-water use efficiency in this experiment, the most appropriate irrigation regime was W2 treatment.


Asunto(s)
Riego Agrícola , Suelo , Triticum , Biomasa , Chara , Ingestión de Líquidos , Agua
8.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1204-1210, 2017 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-29741317

RESUMEN

A field experiment was conducted to study the effects of long-term tillage practices on photosynthetic characteristics of flag leaf, dry matter accumulation and its allocation, and grain yield, with a wheat cultivar, Jimai 22, in both 2013-2014 and 2014-2015 growing seasons. Four tillage practices, namely rotary tillage (R), plowing (P), strip rotary tillage and subsoiling at an interval of 2 years (SRS), and rotary tillage and subsoiling at an interval of 2 years (RS), were conducted in field for 9 years since 2007. The results showed that the net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (gs) of flag leaves under SRS treatment were significantly higher than those of other treatments from 21 to 35 days after anthesis. The SRS treatment had higher average photosynthetically active radiation (PAR) capture ratio than RS and P treatments, while the lowest values were found under R treatment during grain-filling stage. Compared with the other treatments, the plants of SRS treatment had the highest accumulation of dry matter at maturity, the highest allocation of dry matter in grains, and the highest contribution ratio of dry matter from vegetative organs to grains after anthesis. The grain yield and water use efficiency of SRS treatment were significantly higher than those of the other treatments, and the water consumption amount of SRS treatment was significantly higher than that of both R and P treatments, with no significant difference from the RS treatment. Under the current experimental condition, it was suggested that SRS would be the most effective tillage practice to increase both grain yield and water use efficiency for winter wheat production.


Asunto(s)
Fotosíntesis , Triticum , Biomasa , Grano Comestible , Hojas de la Planta , Agua
9.
Ying Yong Sheng Tai Xue Bao ; 27(2): 445-52, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27396116

RESUMEN

Field experiments were conducted during 2012-2014 wheat growing seasons. With no irrigation in the whole stage (WO) treatment as control, three supplemental irrigation treatments were designed based on average relative soil moisture contents at 0-140-cm layer, at jointing and anthesis stages (65% for treatment W1 ; 70% for treatment W2; 75% for treatment W3; respectively), to examine effects of supplemental irrigation on nitrogen accumulation and translocation, grain yield, water use efficiency, and soil nitrate nitrogen leaching in wheat field., Soil water consumption amount, the percentage of soil water consumption and water irrigation to total water consumption in W2 were higher, and soil water consumption of W2 in 100-140 cm soil layer was also higher. The nitrogen accumulation before anthesis and after anthesis were presented as W2, W3>W1>W0, the nitrogen accumulation in vegetative organs at maturity as W3>W2>Wl>W0, and the nitrogen translocation from vegetative organs to grain and the nitrogen accumulation in grain at maturity as W2> W3>W1>W0. At maturity, soil NO3(-)-N content in 0-60 cm soil layer was presented. as W0>W1>W2>W3, that in 80-140 cm soil layer was significantly higher in W3 than in the other treatments, and no significant difference was found in 140-200 cm soil layer among all treatments. W treatment obtained the highest grain yield, water use efficiency, nitrogen uptake efficiency and partial productivity of applied nitrogen. As far as grain yield, water use efficiency, nitrogen uptake efficiency and soil NO3(1)-N leaching were concerned, the W2 regime was the optimal irrigation treatment in this experiment.


Asunto(s)
Nitratos/análisis , Nitrógeno/análisis , Suelo/química , Triticum/crecimiento & desarrollo , Agua/análisis , Riego Agrícola , Biomasa
10.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2353-61, 2015 Aug.
Artículo en Chino | MEDLINE | ID: mdl-26685598

RESUMEN

Field experiments were conducted during 2012-2014 winter wheat growing seasons. Six irrigation treatments were designed: rainfed, W0; a local irrigation practice that irrigated at jointing and anthesis with 60 mm each time, W1; four irrigation treatments were designed with target relative soil moisture of 65% field capacity (FC) at jointing and 70% FC at anthesis in 0-20 (W2) 0-40 (W3), 0-60 (W4) , and 0-140 cm (W5) soil layers, respectively, to study the effects of supplemental irrigation by measuring moisture content in different soil layers on water consumption characteristics and photosynthesis and grain yield of winter wheat. The irrigation amounts at jointing in W1 and W4 were the highest, followed by W3 treatment, W2 and W5 were the lowest. The irrigation amounts at anthesis and total irrigation amounts were ranked as W5 > Wl, W4 > W3 > W2, the total water consumption in W3 was higher than that in W2, but had no difference with that in W1, W4 and W5 treatments, W3 had the higher soil water consumption than W1, W4 and W5 treatments, and the soil water consumption in 40-140 cm soil layers from jointing to anthesis and in 60-140 cm soil layers from anthesis to maturity in W3 were significantly higher than the other treatments. The photosynthetic rate, transpiration rate and water use efficiency of flag leaf at middle stage of grain filling from the W3 treatment were the highest, followed by the W1 and W4 treatments, and W0 treatment was the lowest. In the two growing seasons, the grain yield and water use efficiency in the W3 were 9077-9260 kg · hm(-2) and 20.7-20.9 kg · hm(-2) · mm(-1), respectively, which were higher than those from the other treatments, and the irrigation water productivity in the W3 was the highest. As far as high-yield and high-water use efficiency were concerned in this experiment, the most appropriate soil layer for measuring moisture content was 0-40 cm.


Asunto(s)
Riego Agrícola , Fotosíntesis , Suelo/química , Triticum/fisiología , Transporte Biológico , Biomasa , Hojas de la Planta/fisiología , Estaciones del Año , Semillas , Agua/fisiología
11.
Ying Yong Sheng Tai Xue Bao ; 26(12): 3693-9, 2015 Dec.
Artículo en Chino | MEDLINE | ID: mdl-27112007

RESUMEN

A field experiment was conducted to study the effects of supplemental irrigation based on soil moisture on the photosynthesis characteristics and enzyme activity of flag leaf using the wheat cultivar Jimai 20. Three irrigation treatments were designed with target soil moisture of 65% (W65), 70% (W70) and 75% (W75) both at jointing and anthesis stages. Zero-irrigation ( CK) was used as the control. The results showed that the net photosynthetic rate (Pn) of flag leaf in treatment W70 was dramatically higher than in other treatments from 14 to 21 days after anthesis, as well as sucrose content and sucrose phosphate synthase (SPS) activity. The dry matter mass per area of W70 was higher than that of W65 and CK, and was not significantly different from that of W75. The single stem mass of W70 was higher than that of the other treatments. The activities of superoxide dismutase (SOD) and catalase (CAT) and the soluble protein concentration in flag leaf of W70 were significantly higher than in other treatments from 14 to 28 days after anthesis. The malondialdehyde (MDA) content of W70 was lower than that of W65 and CK, and was not significantly different from that of W75 from 14 to 21 days after anthesis. Grain yields of W70 were 8941.4 and 9125.4 kg · hm⁻² in the 2012-2013 and 2013-2014 wheat growing seasons, showing no significant difference with those of W75, but obviously higher than those of W65 and CK. And the water use efficiency (WUE) of W70 was the highest. Considering grain yield and WUE, maintaining the relative soil water content at 70% by supplemental irrigation both at jointing and anthesis stages was the best treatment.


Asunto(s)
Riego Agrícola , Fotosíntesis , Hojas de la Planta/enzimología , Triticum/fisiología , Agua/fisiología , Catalasa/metabolismo , Glucosiltransferasas/metabolismo , Malondialdehído/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Suelo , Superóxido Dismutasa/metabolismo , Triticum/enzimología
12.
Ying Yong Sheng Tai Xue Bao ; 25(4): 997-1005, 2014 Apr.
Artículo en Chino | MEDLINE | ID: mdl-25011291

RESUMEN

With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study.


Asunto(s)
Riego Agrícola , Triticum/fisiología , Biomasa , Fotosíntesis , Hojas de la Planta , Transpiración de Plantas , Estaciones del Año , Suelo , Agua
13.
Xenobiotica ; 44(8): 716-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24618000

RESUMEN

1. The aurantio-obtusin's glucuronide was detected when aurantio-obtusin was incubated with human liver microsomes (HLMs). Recombinant UGT isoforms screening experiment showed that UGT1A8 was the major isoform contributed to the glucuronidation. 2. The metabolic profiles for aurantio-obtusin in liver microsomes from different species were similar, however, the intrinsic clearance values (Vmax/Km) among the species were: Monkey > Human > Rat > Rabbit > Dog > Pig > Mouse > Guinea pig.


Asunto(s)
Antraquinonas/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Animales , Pruebas de Enzimas , Glucurónidos/química , Humanos , Cinética , Espectrometría de Masas , Microsomas Hepáticos/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
14.
Chem Commun (Camb) ; 49(84): 9779-81, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24026006

RESUMEN

Bufalin 5ß-hydroxylation was found to be an isoform-specific biotransformation probe substrate for cytochrome P450 3A4 (CYP3A4). The probe reaction was well-characterized and it can be used for measuring the real catalytic activities of CYP3A4 from different enzyme sources.


Asunto(s)
Bufanólidos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sondas Moleculares/metabolismo , Biocatálisis , Bufanólidos/química , Citocromo P-450 CYP3A/química , Humanos , Hidroxilación , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformación Molecular , Sondas Moleculares/química
15.
Ying Yong Sheng Tai Xue Bao ; 24(5): 1361-6, 2013 May.
Artículo en Chino | MEDLINE | ID: mdl-24015556

RESUMEN

In 2010-2011, a field experiment with high-yielding winter wheat cultivar Jimai 22 was conducted to study the effects of supplemental irrigation based on the measurement of moisture content in different soil layers on the water consumption characteristics and grain yield of winter wheat. Four soil layers (0-20 cm, W1; 0-40 cm, W2; 0-60 cm, W3; and 0-140 cm, W4) were designed to make the supplemental irrigation at wintering stage (target soil relative moisture content = 75%), jointing stage (target soil relative moisture content = 70%), and anthesis stage (target soil relative moisture content = 70%), taking no irrigation (W0) during the whole growth season as the control. At the wintering, jointing, and anthesis stages, the required irrigation amount followed the order of W3 > W2 > W1. Treatment W4 required smaller irrigation amount at wintering and jointing stages, but significantly higher one at anthesis stage than the other treatments. The proportion of the irrigation amount relative to the total water consumption over the entire growth season followed the sequence of W4, W3 > W2 > W1. By contrast, the proportion of soil water consumption relative to the total water consumption followed the trend of W1 > W2 > W3 > W4. With the increase of the test soil depths, the soil water utilization ratio decreased. The water consumption in 80-140 cm and 160-200 cm soil layers was significantly higher in W2 than in W3 and W4. The required total irrigation amount was in the order of W3 > W4 > W2 > W1, the grain yield was in the order of W2, W3, W4 > W1 > W0, and the water use efficiency followed the order of W2, W4 > W0, W1 > W3. To consider the irrigation amount, grain yield, and water use efficiency comprehensively, treatment W2 under our experimental condition could be the optimal treatment, i. e., the required amount of supplemental irrigation based on the measurement of the moisture content in 0-40 cm soil layer should be feasible for the local winter wheat production.


Asunto(s)
Riego Agrícola/métodos , Biomasa , Suelo/química , Triticum/crecimiento & desarrollo , Agua/análisis , China , Grano Comestible/crecimiento & desarrollo
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(10): 2809-14, 2013 Oct.
Artículo en Chino | MEDLINE | ID: mdl-24409741

RESUMEN

The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.


Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Ríos , Ambiente , Modelos Teóricos , Redes Neurales de la Computación , Plantas , Análisis de Regresión , Suelo
17.
Pharmazie ; 68(12): 945-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24400440

RESUMEN

The aim of the present study was to investigate arbidol's inhibition towards UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. The nonspecific probe substrate 4-methylumbelliferone (4-MU) and recombinant UGT enzymes (UGT1A9, UGT2B7) were firstly used to evaluate the inhibition of arbidol towards UGT1A9 and UGT2B7. Furthermore, specific substrates of UGT1A9 and UGT2B7 propofol and zidovudine (AZT) were used to determine the inhibition of arbidol towards UGT1A9 and UGT2B7. Inhibition type and inhibition kinetic parameters (Ki) were determined. In vitro-in vivo extrapolation (IV-IVE) was performed to predict in vivo DDI magnitude induced by arbidol. Arbidol was demonstrated to exhibit competitive inhibition towards UGT1A9 and UGT2B7 without substate-dependent behaviour. The inhibition kinetic parameters (Ki) were calculated to be 0.5 microM, 3.5 microM, 2.8 microM, 29.7 microM for UGT2B7-mediated 4-MU glucuronidation, UGT1A9-mediated 4-MU glucuronidation, UGT2B7-mediated AZT glucuronidation, and UGT1A9-mediated propofol glucuronidation, respectively. Using these parameters, the in vivo alteration of area under of concentration-time curve (AUC) was calculated to be 156%, 22%, 28% and 2.6%, respectively. Given that arbidol exhibits strong inhibition towards UGT1A9 and UGT2B7, clinical monitoring should be given when arbidol was co-administered with drugs mainly undergoing UGT1A9, UGT2B7-mediated metabolism.


Asunto(s)
Antivirales/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Indoles/farmacología , Anestésicos Intravenosos/química , Fármacos Anti-VIH/química , Área Bajo la Curva , Glucurónidos/química , Glucurónidos/metabolismo , Humanos , Indicadores y Reactivos , Cinética , Propofol/química , UDP Glucuronosiltransferasa 1A9 , Zidovudina/química
18.
Ying Yong Sheng Tai Xue Bao ; 24(8): 2186-96, 2013 Aug.
Artículo en Chino | MEDLINE | ID: mdl-24380337

RESUMEN

Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.


Asunto(s)
Riego Agrícola/métodos , Suelo/química , Triticum/crecimiento & desarrollo , Agua/metabolismo , Biomasa , China , Estaciones del Año , Semillas/crecimiento & desarrollo , Triticum/metabolismo
19.
Phytother Res ; 27(9): 1358-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23148031

RESUMEN

The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 µM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors.


Asunto(s)
Glucuronosiltransferasa/antagonistas & inhibidores , Ácido Glicirretínico/farmacología , Glycyrrhiza/química , Ácido Glicirrínico/farmacología , Interacciones de Hierba-Droga , Humanos , Isoenzimas/antagonistas & inhibidores , Cinética , Hígado/enzimología
20.
Phytother Res ; 27(8): 1232-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23065713

RESUMEN

The detailed mechanisms on licorice-drug interaction remain to be unclear. The aim of the present study is to investigate the inhibition of important UGT isoforms by two important ingredients of licorice, liquiritin, and liquiritigenin. The results showed that liquiritigenin exhibited stronger inhibition towards all the tested UGT isoforms than liquiritin. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the competitive inhibition of liquiritigenin towards UGT1A1 and UGT1A9-mediated 4-MU glucuronidation reaction. The inhibition kinetic parameters (Ki ) were calculated to be 9.1 and 3.2 µM for UGT1A1 and UGT1A9, respectively. Substrate-dependent inhibition behaviour was also observed for UGT1A1 in the present study. All these results will be helpful for understanding the deep mechanism of licorice-drug interaction. However, when translating these in vitro parameters into in vivo situations, more complex factors should be considered, such as substrate-dependent inhibition of UGT isoforms, the contribution of UGT1A1 and UGT1A9 towards the metabolism of drugs, and many factors affecting the abundance of ingredients in the licorice.


Asunto(s)
Flavanonas/química , Interacciones Alimento-Droga , Glucósidos/química , Glucuronosiltransferasa/metabolismo , Glycyrrhiza/química , Humanos , Himecromona/metabolismo , Isoenzimas/metabolismo , Cinética , UDP Glucuronosiltransferasa 1A9
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...