Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37763908

RESUMEN

With the arrival of the Fifth Generation (5G) communication era, there has been an urgent demand for acoustic filters with a high frequency and ultrawide bandwidth used in radio-frequency (RF) front-ends filtering and signal processing. First-order antisymmetric (A1) lamb mode resonators based on LiNbO3 film have attracted wide attention due to their scalable, high operating frequency and large electromechanical coupling coefficients (K2), making them promising candidates for sub-6 GHz wideband filters. However, A1 mode resonators suffer from the occurrence of transverse modes, which should be addressed to make these devices suitable for applications. In this work, theoretical analysis is performed by finite element method (FEM), and the admittance characteristics of an A1 mode resonator and displacement of transverse modes near the resonant frequency (fr) are investigated. We propose a novel Dielectric-Embedded Piston Mode (DEPM) structure, achieved by partially etching a piezoelectric film filled with SiO2, which can almost suppress the transverse modes between the resonant frequency (fr) and anti-resonant frequency (fa) when applied on ZY-cut LiNbO3-based A1 mode resonators. This indicates that compared with Broadband Piston Mode (BPM), Filled-broadband Piston Mode (FPM) and standard structures, the DEPM structure is superior. Furthermore, the design parameters of the resonator are optimized by adjusting the width, depth and filled materials in the etched window of the DEPM structure to obtain a better suppression of transverse modes. The optimized A1 mode resonator using a DEPM structure exhibits a transverse-free response with a high fr of 3.22 GHz and a large K2 of ~30%, which promotes the application of A1 mode devices for use in 5G RF front-ends.

2.
J Phys Chem Lett ; 14(23): 5441-5446, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37284762

RESUMEN

High-efficiency blue phosphorescence and deep-blue laser emissions play a crucial role in organic optoelectronic applications. However, designing metal-free organic blue luminescence with high energy levels of excited states and suppression of nonradiative transitions remains a formidable challenge. Herein, we demonstrate a synthetic strategy for achieving a deep-blue laser and efficient phosphorescence based on confining chromophores in the tetrahedral structure of sp3 hybridization. The data analysis reveals that the construction of the quaternary carbon center contributes to spatially separated donors and acceptors and considerable steric constraints, prompting an effective intersystem crossing (ISC) process and suppressing nonradiative transitions. The negligible interaction between chromophores simultaneously produces a deep-blue fluorescent laser and blue phosphorescence with an efficiency up to 82.3%. This work opens the door to multifunctional blue-emitting materials with high efficiency, providing a high-potential candidate for electrically pumped organic lasers and energy efficient light-emitting diodes.

3.
J Phys Chem Lett ; 13(44): 10424-10431, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36326286

RESUMEN

Organic phosphorescence materials provide an opportunity to use triplets for lasing. However, population inversion based on phosphorescence is hard to establish, owing to low luminescent quantum efficiency and intensive optical loss. By comparison, thermally activated delayed fluorescence emitters exhibit excellent optical gain with the aid of the reverse intersystem crossing (RISC) process. In this work, we designed a multifunctional gain material, not only serving as a thermally activated delayed fluorescence (TADF) emitter with excellent optical gain but also working as a phosphorescence source with high utilization of triplets. The lone pair of electrons in oxygen substitutions promotes a fast spin-flip and high delayed fluorescence quantum yield (ΦDF = 55%), enabling TADF amplified spontaneous emissions (ASE) of CH2Cl2 solution. Single-crystalline nanowires of H-aggregates effectively lower triplet energy levels with high phosphorescence quantum yield (ΦP = 27%), demonstrating Fabry-Perot mode phosphorescence lasing at 630 nm.

4.
Angew Chem Int Ed Engl ; 61(30): e202204326, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35561154

RESUMEN

Metal-covalent organic frameworks (MCOFs) have been recently received wide attention owing to the homogeneous distribution of active metal centers that are beneficial for enhancing the application potentials. However, metal complex based functional building blocks for MCOFs synthesis are limited. Herein, two new MCOFs (Ni-Py-COF and Ni-Bn-COF) were constructed via a novel nickel glyoximate based building block. Splendid photocatalytic activity on hydrogen evolution from water and great long-term recyclability were achieved using these nickel glyoximate based MCOFs as photocatalysts. Excitingly, even without the addition of Pt co-catalyst, the hydrogen evolution rates (HER) of Ni-Py-COF reached up to 626 µmol g-1 h-1 , which is better than many porous organic polymers. This work not only expands the type of building units for MCOFs, but also provides meaningful insights for developing stable, efficient and earth-abundant photocatalysts toward H2 generation.

5.
J Phys Chem Lett ; 12(39): 9501-9507, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559539

RESUMEN

In this work, we present for the first time a general strategy via molecular reversed conformational distortion for thermally activated delayed fluorescence (TADF). A model purely organic compound named BNNIO with a common fluorophore flexibly linked to benzene by an oxygen atom is rationally designed and successfully synthesized. Moreover, the rate constant of reverse intersystem crossing reaches 2.34 × 104 s-1 as determined by transient spectroscopy. As a result, TADF emission of BNNIO is observed with a photoluminescence quantum yield of 90.72% and a lifetime of 84.76 µs at 415 nm. This universal regulation strategy undoubtedly opens a new avenue for the development of novel purely organic blue light-emitting materials.


Asunto(s)
Colorantes Fluorescentes/química , Teoría Funcional de la Densidad , Colorantes Fluorescentes/síntesis química , Conformación Molecular , Naftalimidas/química , Oxígeno/química , Espectrometría de Fluorescencia
6.
Nano Lett ; 21(7): 3287-3294, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33724847

RESUMEN

Thermally activated delayed fluorescent (TADF) emitters have received great attention in organic light-emitting diodes and laser diodes because of high exciton utilization efficiency and low optical loss caused by triplets. However, the direct observation of lasing emission from nondoped TADF microcrystals has yet to be reported. Here, we demonstrated a three-color (green, yellow, and red) microlaser from three nondoped TADF microcrystals with well-controlled geometries. The temperature-dependent dynamic analyses testify that the regenerated singlets which originated from the reverse intersystem crossing process at room temperature are beneficial for population inversion and reduce triplet-absorption/annihilation optical loses, together resulting in thermally activated lasing actions. Thanks to single-crystalline structures of TADF emitters, the relationship between triplet-harvesting capability and the molecular structure was systematically investigated. The results not only offer rational design of pure TADF gain materials but also provide guidance for the high-performance electrically driven organic solid-state lasers and multicolor laser integration.

7.
Biosci Rep ; 40(12)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33175096

RESUMEN

Previous studies failed to elucidate the detailed mechanisms of anesthetic preconditioning as a protective approach against ischemic/reperfusion (I/R) injury in cells. The present study mainly centered on discovering the mechanisms of Sevoflurane (Sev) in preventing cardiomyocytes against I/R injury. Human cardiomyocyte AC16 cell line was used to simulate I/R injury based on a hypoxia/reperfusion (H/R) model. After Sev treatment, cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Lactate dehydrogenase (LDH) content was measured using an LDH Detection Kit. Relative mRNA and protein expressions of LINC01133, miR-30a-5p and apoptosis-related proteins were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. Target gene of miR-30a-5p and their potential binding sites were predicted using Starbase and confirmed by dual-luciferase reporter assay. Cell behaviors were assessed again after miR-30a-5p and LINC01133 transfection. Sev could improve cell viability, reduce LDH leakage, and down-regulate the expressions of apoptosis-related proteins (Bax, cleaved caspase-3 and cleaved caspase-9) and LINC01133 as well as up-regulate miR-30a-5p and Bcl-2 expressions in H/R cells. MiR-30a-5p was the target of LINC01133, and up-regulating miR-30a-5p enhanced the effects of Sev in H/R cells, with a suppression on H/R-induced activation of the p53 signaling pathway. However, up-regulating LINC01133 reversed the enhancing effects of miR-30a-5p on Sev pretreatment in H/R cells. Sev could protect cardiomyocytes against H/R injury through the miR-30a-5p/LINC01133 axis, which may provide a possible therapeutic method for curing cardiovascular I/R injury.


Asunto(s)
Apoptosis/efectos de los fármacos , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , ARN Largo no Codificante/metabolismo , Sevoflurano/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Hipoxia de la Célula , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Largo no Codificante/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
8.
Chemistry ; 24(8): 1801-1805, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29281148

RESUMEN

Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two ß-iminoenamine-BF2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH2 and S-2I⋅⋅⋅I-Ph-NH2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH2 ensures red RTP from S-2CN/I-Ph-NH2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed.

9.
J Phys Chem Lett ; 8(22): 5609-5615, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29087714

RESUMEN

A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH2Cl2, whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

10.
J Phys Chem A ; 121(45): 8652-8658, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29064248

RESUMEN

The development of metal-free organic room temperature phosphorescence (RTP) materials has attracted increasing attention because of their applications in sensors, biolabeling (imaging) agents and anticounterfeiting technology, but remains extremely challenging owing to the restricted spin-flip intersystem crossing (ISC) followed by low-yield phosphorescence that cannot compete with nonradiative relaxation processes. Here, we report a facile strategy to realize highly efficient RTP by doping iodo difluoroboron dibenzoylmethane (I-BF2dbm-R) derivatives into a rigid crystalline 4-iodobenzonitrile (Iph-C≡N) matrix. We found that halogen bonding between cyano group of Iph-C≡N matrix and iodine atom of I-BF2dbm-R dopant is formed in doped crystals, i.e., Iph-C≡N···I-BF2dbm-R, which not only suppresses nonradiative relaxation of triplets but also promotes the spin-orbit coupling (SOC). As a result, the doped crystals show intense RTP with an efficiency up to 62.3%. By varying the substituent group R in I-BF2dbm-R from electron donating -OCH3 to electron accepting -F, -CN groups, the ratio between phosphorescence and fluorescence intensities has been systematically increased from 3.8, 15, to 50.

11.
J Am Chem Soc ; 139(18): 6376-6381, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28414231

RESUMEN

Organic solid-state lasers (OSSLs) based on singlet fluorescence have merited intensive study as an important class of light sources. Although the use of triplet phosphors has led to 100% internal quantum efficiency in organic light-emitting diodes (OLEDs), stumbling blocks in triplet lasing include generally forbidden intersystem crossing (ISC) and a low quantum yield of phosphorescence (ΦP). Here, we reported the first triplet-phosphorescence OSSL from a nanowire microcavity of a sulfide-substituted difluoroboron compound. As compared with the unsubstituted parent compound, the lone pair of electrons of sulfur substitution plus the intramolecular charge transfer interaction introduced by the nitro moiety lead to an highly efficient T1 (π,π*) ← S1 (n,π*) ISC (ΦISC = 100%) and a moderate ΦP (10%). This, plus the optical feedback provided by nanowire Fabry-Perot microcavity, enables triplet-phosphorescence OSSL emission at 650 nm under pulsed excitation. Our results open the door for a whole new class of laser materials based on previously untapped triplet phosphors.

12.
Phys Chem Chem Phys ; 18(48): 32678-32681, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27892570

RESUMEN

Previous studies suggest the perylenediimide (PDI) triplet excited state (T1) have been accessible only through bimolecular sensitization, the internal heavy-atom effect or a sophisticated cascade of nonradiative processes. Here, we designed heavy-atom-free PDIs to prompt the Tn ← S1 intersystem crossing (ISC) by introducing electron donating heterofluorene groups at the head positions of the electron-deficient PDI core. We obtained relatively high ISC efficiency up to 92% yield. Furthermore, promptly generated PDI triplets can sensitize the molecular oxygen quantitatively to yield 1O2, with singlet oxygen generation efficiencies (ΦΔ) near to unity. These results further suggest that the ISC process of PDIs can be enhanced through the intramolecular charge transfer (ICT) interaction, providing guidelines for developing triplet-generating PDIs and related rylene diimides for optoelectronic applications.

13.
Chemphyschem ; 17(20): 3160-3164, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27553529

RESUMEN

The 1D nanostructures of perylenediimides (PDIs) have been readily obtained owing to strong cofacial π-π stacking interactions, which, however, subsequently render PDIs weakly emissive in the solid state. Therefore, organic solid-state lasers based on 1D nanostructures of PDIs have not been achieved yet. Herein, we prepared 1D-nanowires of N,N'-bis(1-ethylpropyl)-2,5,8,11-tetrakis(o-methylphenyl)-perylene-3,4:9,10-tetracarboxylic acid diimide (mp-PDI), which stack into a loosely J-type arrangement. J-aggregation leads to a solid-state photoluminescence (PL) efficiency φ>18 % and the nanowires of mp-PDI exhibit excellent Fabry-Perot (FP) mode laser action.

14.
Chemistry ; 22(14): 4717-22, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26853213

RESUMEN

Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1 . Generation of a triplet excited state (T1 ) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy-atom-free strategy to prompt the T1 ←S1 intersystem crossing (ISC) by introducing electron-donating aryl (Ar) groups at the head positions of an electron-deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron-donating ability of head-substituted aryl groups from phenyl (p-PDI) to methoxyphenyl (MeO-PDI) and then to methylthioxyphenyl (MeS-PDI). By enhancing the intramolecular charge-transfer (ICT) interaction from p-PDI to MeO-PDI, and then to MeS-PDI, singlet oxygen generation via energy-transfer reactions from T1 of PDIs to (3)O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet-generating PDIs and related rylene diimides for optoelectronic applications.

15.
J Am Chem Soc ; 137(48): 15105-11, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26580969

RESUMEN

Organic solid-state lasers (OSSLs) have been a topic of intensive investigations. Perylenediimide (PDI) derivatives are widely used in organic thin-film transistors and solar cells. However, OSSLs based on neat PDIs have not been achieved yet, owing to the formation of H-aggregates and excimer trap-states. Here, we demonstrated the first PDI-based OSSL from whispering-gallery mode (WGM) hexagonal microdisk (hMD) microcavity of N,N'-bis(1-ethylpropyl)-2,5,8,11-tetrakis(p-methyl-phenyl)-perylenediimide (mp-PDI) self-assembled from solution. Single-crystal data reveal that mp-PDI molecules stack into a loosely packed twisted brickstone arrangement, resulting in J-type aggregates that exhibit a solid-state photoluminescence (PL) efficiency φ > 15%. Moreover, we found that exciton-vibration coupling in J-aggregates leads to an exceptional ultrafast radiative decay, which reduces the exciton diffusion length, in turn, suppresses bimolecular exciton annihilation (bmEA) process. These spectral features, plus the optical feedback provided by WGM-hMD microcavity, enable the observation of multimode lasing as evidenced by nonlinear output, spectral narrowing, and temporal coherence of laser emission. With consideration of high carrier-mobility associated with PDIs, hMDs of mp-PDI are attractive candidates on the way to achieve electrically driven OSSL.

16.
Phys Chem Chem Phys ; 17(41): 27658-64, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26427797

RESUMEN

Cryogenic temperature detection plays an irreplaceable role in exploring nature. Developing high sensitivity, accurate, observable and convenient measurements of cryogenic temperature is not only a challenge but also an opportunity for the thermometer field. The small molecule 9-(9,9-dimethyl-9H-fluoren-3yl)-14-phenyl-9,14-dihydrodibenzo[a,c]phenazine (FIPAC) in 2-methyl-tetrahydrofuran (MeTHF) solution is utilized for the detection of cryogenic temperature with a wide range from 138 K to 343 K. This system possesses significantly high sensitivity at low temperature, which reaches as high as 19.4% K(-1) at 138 K. The temperature-dependent ratio of the dual emission intensity can be fitted as a single-exponential curve as a function of temperature. This single-exponential curve can be explained by the mechanism that the dual emission feature of FIPAC results from the excited-state configuration transformations upon heating or cooling, which is very different from the previously reported mechanisms. Here, our work gives an overall interpretation for this mechanism. Therefore, application of FIPAC as a cryogenic thermometer is experimentally and theoretically feasible.

17.
J Am Chem Soc ; 137(34): 11038-46, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26226301

RESUMEN

Charge-transfer (CT) interactions between donor (D) and acceptor (A) groups, as well as CT exciton dynamics, play important roles in optoelectronic devices, such as organic solar cells, photodetectors, and light-emitting sources, which are not yet well understood. In this contribution, the self-assembly behavior, molecular stacking structure, CT interactions, density functional theory (DFT) calculations, and corresponding physicochemical properties of two similar halogen-bonded co-crystals are comprehensively investigated and compared, to construct an "assembly-structure-CT-property" relationship. Bpe-IFB wire-like crystals (where Bpe = 1,2-bis(4-pyridyl)ethylene and IFB = 1,3,5-trifluoro-2,4,6-triiodobenzene), packed in a segregated stacking form with CT ground and excited states, are measured to be quasi-one-dimensional (1D) semiconductors and show strong violet-blue photoluminescence (PL) from the lowest CT1 excitons (ΦPL = 26.1%), which can be confined and propagate oppositely along the 1D axial direction. In comparison, Bpe-F4DIB block-like crystals (F4DIB = 1,4-diiodotetrafluorobenzene), packed in a mixed stacking form without CT interactions, are determined to be insulators and exhibit unique white light emission and two-dimensional optical waveguide property. Surprisingly, it seems that the intrinsic spectroscopic states of Bpe and F4DIB do not change after co-crystallization, which is also confirmed by theoretical calculations, thus offering a new design principle for white light emitting materials. More importantly, we show that the CT interactions in co-crystals are related to their molecular packing and can be triggered or suppressed by crystal engineering, which eventually leads to distinct optoelectronic properties. These results help us to rationally control the CT interactions in organic D-A systems by tuning the molecular stacking, toward the development of a fantastic "optoelectronic world".


Asunto(s)
Electrónica , Halógenos/química , Cristalización , Etano/análogos & derivados , Etano/química , Fluorobencenos/química , Yodobencenos/química , Luminiscencia , Tamaño de la Partícula , Piridinas/química , Teoría Cuántica , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...