Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Heliyon ; 8(12): e12182, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36536902

RESUMEN

Ethnopharmacological relevance: Guipi Tang (GPT) is a widely used traditional Chinese medicine that is used to treat major depressive disorder. However, the molecular mechanisms of its effects remain unclear. Aim of the study: This study aimed to investigate the antidepressant-like effects of GPT and explore its underlying molecular mechanisms. Materials and methods: Male Sprague-Dawley rats were subjected to a chronic unpredictable mild stress (CUMS) procedure and treated with various doses of GPT, with fluoxetine treatment as a positive control. Behavioural tests (including sucrose preference test, novelty-suppressed feeding test, open-field test and forced swim test), terminal deoxynucleotidyl transferase dUTP nick end labeling and enzyme-linked immunosorbent assay were conducted. The levels of Bax, Bcl-2, cleaved caspase-3, PI3K, p-PI3K, AKT, p-AKT, BDNF, TrkB and CREB or p-CREB were assessed at the protein level using western blotting or immunofluorescence. Results: GPT consists of mainly known drugs, such as liquiritin and ginsenosides. It reversed depressive behaviours and decreased cell apoptosis in the hippocampi of CUMS rats. It significantly upregulated the protein level of Bax, p-Akt, p-PI3K, BDNF, TrkB and p-CREB and downregulated the level of cleaved caspase-3 and Bcl-2. Conclusions: GPT had anti-depressive activity as indicated by the amelioration of depression-like behaviour and the inhibition of hippocampal neuronal apoptosis in CUMS rats. This inhibition was mediated partly by modulating the PI3K/Akt and/or BDNF/TrkB/CREB pathway, in which, glycosides, the main components of GPT, might be involved.

2.
Front Endocrinol (Lausanne) ; 13: 1063579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440222

RESUMEN

Background: Metabolic syndrome (MS) is a group of complex medical conditions that can lead to serious cardiovascular and cerebrovascular diseases. According to the theory of traditional Chinese medicine (TCM), MS can be divided into two main subtypes termed 'phlegm-dampness syndrome' (TSZE) and 'qi-yin deficiency syndrome' (QYLX). At present, the research into intestinal microbiota of different TCM syndromes of MS and its association with clinical manifestation is lacking. Materials and methods: Using 16S rRNA sequencing, we performed a cross-sectional analysis of human gut microbiota between two different TCM syndromes (QYLX and TSZE, n=60) of MS, and their differences with healthy participants (n=30). Results: We found that the QYLX and TSZE groups differ from the healthy control group in the overall gut microbiota composition, and some specific microbial taxa and functional pathways. Moreover, significantly differentially abundant taxa and distinct BMI-correlated taxa were observed between QYLX and TSZE groups, suggesting the potential contribution of gut microbiota to the distinction between the two TCM syndromes. The predicted functional profiles also showed considerable differences, especially pathways related to amino acid metabolism and lipopolysaccharide synthesis. Conclusion: Our study highlights the gut microbiota's contribution to the differentiation between two TCM syndromes of MS and may provide the rationale for adopting different microbiota-directed treatment strategies for different TCM syndromes of MS in the future.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Humanos , Deficiencia Yin , Microbioma Gastrointestinal/genética , Qi , Estudios Transversales , ARN Ribosómico 16S/genética
3.
Dalton Trans ; 51(20): 7851-7855, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35546118

RESUMEN

A three-dimensional crosslinked CFs@CNT/CoSx nanocomposite was successfully synthesized by in situ growing carbon nanotubes on carbon nanofibers and a facile sulfurization process. The carbon nanotubes synthesized by sintering melamine under the catalysis of cobalt can increase the specific surface areas and provide abundant sodium ion diffusion channels for the composite. Meanwhile, the formed cobalt sulfide nanoparticles will increase the active sites on the surface of CFs@CNT/CoSx. Due to the rational design of the composite structure, such an anode can deliver a specific capacity of 423.7 mA h g-1 after 100 cycles at 100 mA g-1 and exhibit superior rate performance of retaining 324.1 mA h g-1 at 2 A g-1 for sodium storage.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35178098

RESUMEN

OBJECTIVE: To explore the potential active components and corresponding target herb pairs of Radix Ginseng (Renshen) and Radix Bupleuri (Chaihu) in the treatment of nonalcoholic fatty liver disease (NAFLD) through network pharmacology and in vitro experiments. METHODS: The active components and potential targets of the herb pair of Renshen and Chaihu were screened through a network database system, and Venn analysis was performed with the obtained NAFLD targets. The intersecting targets were analysed for gene ontology (GO) functions and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways, and a protein-protein interaction (PPI) network was generated. Cytoscape software was used to construct active component-target networks of the Renshen and Chaihu herb pair. Free fatty acids were added to the HepG2 cell line to create high-fat models that were treated with different concentrations of stigmasterol. The effect of stigmasterol on the lipid metabolism in HepG2 cells and PPARγ-knockdown cells was determined by oil red O staining, Nile red staining, and TG level. PPARγ and UCP-1 mRNA, and protein expression levels were detected by qRT-PCR and Western blot analyses, respectively. RESULTS: Twenty active components obtained from the Renshen and Chaihu herb pair were identified. The herb pair active component-target network showed that both Renshen and Chaihu contained stigmasterol and kaempferol as active components. The PPI network comprised 63 protein nodes. GO enrichment analysis and KEGG pathway enrichment analysis showed that the targets were mainly involved in lipid metabolism. Eight core targets were identified: AKT1, PPARG, MAPK3, TNF, TP53, SIRT1, STAT3, and PPARA. In vitro experiments demonstrated that stigmasterol reduced lipid accumulation and TG levels in HepG2 cells, and the mechanism may have been related to the activation of the PPARγ-UCP-1 signalling pathway. CONCLUSION: This study preliminarily illustrated the potential components and corresponding core targets of the Renshen and Chaihu herb pair in treating NAFLD. The effect of stigmasterol on the PPARγ-UCP-1 signalling pathway in enhancing lipid metabolism may represent one of the mechanisms of the Renshen and Chaihu herb pair in the treatment of NAFLD. The results provide new evidence and research insights to reveal the roles of Renshen and Chaihu in the management of NAFLD.

5.
Front Med (Lausanne) ; 9: 1055252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714147

RESUMEN

Introduction: Mitochondria dysfunction is one of the primary causes of tubular injury in acute kidney injury (AKI). Notoginsenoside Fc (Fc), a new saponin isolated from Panax notoginseng, exhibited numerous pharmacological actions. However, the beneficial effects of Fc on renal tubular impairment and mitochondrial dysfunction in AKI have not been fully studied. Methods: In this study, we established acetaminophen (APAP)-induced AKI model in mice to examine the therapeutic impacts of Fc on AKI. Results: Our results showed that Fc could decrease the levels of the serum creatinine (Scr), blood urea nitrogen (BUN) and Cystatin C in mice with AKI. Fc also ameliorated renal histopathology, renal tubular cells apoptosis and restored expression of apoptosis-related proteins such as Bax, Bcl-2 and caspase3 (C-caspase3). Additionally, Fc increased the protein expression of SIRT3 and SOD2 in kidneys from mice with AKI. In vitro studies further showed Fc reduced the apoptosis of HK-2 cells exposure to APAP, attenuated the loss of mitochondrial membrane potential and decreased the formation of mitochondrial superoxide. Fc also partly restored the protein expression of Bax, Bcl-2, C-Caspase3, SIRT3, and SOD2 in HK-2 cells exposure to APAP. Conclusion: In summary, Fc might reduce renal tubular injury and mitochondrial dysfunction in AKI partly through the regulation of SIRT3/SOD2 pathway.

6.
Transl Psychiatry ; 11(1): 542, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671017

RESUMEN

The pathogenesis of Alzheimer's disease (AD) involves multiple cell types including endothelial cells, glia, and neurons. It suggests that therapy against single target in single cell type may not be sufficient to treat AD and therapies with protective effects in multiple cell types may be more effective. Here, we comprehensively investigated the effects of bilobalide on neuroinflammation and Aß degrading enzymes in AD cell model and mouse model. We find that bilobalide inhibits Aß-induced and STAT3-dependent expression of TNF-α, IL-1ß, and IL-6 in primary astrocyte culture. Bilobalide also induces robust expression of Aß degrading enzymes like NEP, IDE, and MMP2 to facilitate astrocyte-mediated Aß clearance. Moreover, bilobalide treatment of astrocyte rescues neuronal deficiency in co-cultured APP/PS1 neurons. Most importantly, bilobalide reduces amyloid and inflammation in AD mouse brain. Taken together, the protective effects of bilobalide in in vitro cultures were fully recapitulated in in vivo AD mouse model. Our study supports that bilobalide has therapeutic potential for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Bilobálidos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Animales , Astrocitos , Células Endoteliales , Inflamación/tratamiento farmacológico , Ratones , Neuronas
7.
Artículo en Inglés | MEDLINE | ID: mdl-34567216

RESUMEN

Amyloid-ß peptide (Aß) accumulation is a detrimental factor in cerebral ischemia/reperfusion (I/R) injuries accounting for dementia induced by ischemic stroke. In addition to blood brain barrier (BBB), the glymphatic system mediated by aquaporin-4 (AQP-4) on astrocytic endfeet functions as an important pathway for the clearance of Aß in the brain. Cerebral I/R induced astrocytic pyroptosis potentially causes the AQP-4 polarization loss and dysfunctional BBB-glymphatic system exacerbating the accumulation of Aß. Furthermore, Aß toxicity has been identified as a trigger of pyroptosis and BBB damage, suggesting an amplified effect of Aß accumulation after cerebral I/R. Therefore, based on our previous work, this study was designed to explore the intervention effects of Tongxinluo (TXL) on astrocytic pyroptosis and Aß accumulation after cerebral I/R in rats. The results showed that TXL intervention obviously alleviated the degree of pyroptosis by downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, nucleotide-binding oligomerization domain-like receptors pyrin domain containing 3 (NLRP3), interleukin-6 (IL-6), and cleaved IL-1ß and abated astrocytic pyroptosis after cerebral I/R. Moreover, TXL intervention facilitated to restore AQP-4 polarization and accordingly relieve Aß accumulation around astrocytes in ischemic cortex and hippocampus as well as the formation of toxic Aß (Aß 1-42 oligomer). Our study indicated that TXL intervention could exert protective effects on ischemic brain tissues against pyroptotic cell death, inhibit astrocytic pyroptosis, and reduce toxic Aß accumulation around astrocytes in cerebral I/R injuries. Furthermore, our study provides biological evidence for the potential possibility of preventing and treating poststroke dementia with TXL in clinical practice.

8.
Neural Plast ; 2021: 4504363, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434229

RESUMEN

Neuroinflammation-related amyloid-beta peptide (Aß) accumulation after cerebral ischemia/reperfusion (I/R) accounts for cerebral I/R injuries and poststroke dementia. Recently, pyroptosis, a proinflammatory cell death, has been identified as a crucial pathological link of cerebral I/R injuries. However, whether pyroptosis acts as a trigger of Aß accumulation after cerebral I/R has not yet been demonstrated. Blood-brain barrier (BBB) and glymphatic system mediated by aquaporin-4 (AQP-4) on astrocytic endfeet are important pathways for the clearance of Aß in the brain, and pyroptosis especially occurring in astrocytes after cerebral I/R potentially damages BBB integrity and glymphatic function and thus influences Aß clearance and brain homeostasis. In present study, the method of middle cerebral artery occlusion/reperfusion (MCAO/R) was used for building models of focal cerebral I/R injuries in rats. Then, we used lipopolysaccharide and glycine as the agonist and inhibitor of pyroptosis, respectively, Western blotting for detections of pyroptosis, AQP-4, and Aß 1-42 oligomers, laser confocal microscopy for observations of pyroptosis and Aß locations, and immunohistochemical stainings of SMI 71 (a specific marker for BBB integrity)/AQP-4 and Nissl staining for evaluating, respectively, BBB-glymphatic system and neuronal damage. The results showed that pyroptosis obviously promoted the loss of BBB integrity and AQP-4 polarization, brain edema, Aß accumulation, and the formation of Aß 1-42 oligomers and thus increased neuronal damage after cerebral I/R. However, glycine could inhibit cerebral I/R-induced pyroptosis by alleviating cytomembrane damage and downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, NLRP3 (nucleotide-binding domain, leucine-rich repeat containing protein 3), interleukin-6 (IL-6) and IL-1ß and markedly abate above pathological changes. Our study revealed that pyroptosis is a considerable factor causing toxic Aß accumulation, dysfunctional BBB-glymphatic system, and neurological deficits after cerebral I/R, suggesting that targeting pyroptosis is a potential strategy for the prevention of ischemic stroke sequelae including dementia.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Supervivencia Celular/fisiología , Sistema Glinfático/fisiología , Neuronas/metabolismo , Piroptosis/fisiología , Daño por Reperfusión/metabolismo , Animales , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Sistema Glinfático/patología , Homeostasis/fisiología , Masculino , Microglía/metabolismo , Microglía/patología , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología
9.
Phys Chem Chem Phys ; 23(8): 4805-4810, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605273

RESUMEN

A giant exchange bias (EB) of 9600 Oe was observed in polycrystalline Fe3O4/CoO layers at 10 K after 20 kOe field cooling, and was attributed to the strong exchange coupling formed by the interfacial spins between the polycrystalline Fe3O4 and the CoO layer. It was found that at 10 K, the magnetic-moment difference (ΔM) between the zero field cooling curves and field cooling curves first increases and then decreases with the change of the field, and it reaches the maximum value at a field of 20 kOe, which suggests that the interfacial spins can be tuned by the cooling field. Furthermore, other magnetic properties, including field dependence, temperature dependence, and training effects, were investigated, which further confirmed that the interfacial spins play an important role in the EB effect. This work provides a method to tune the magnitude of the EB effect and reveals the mechanism of the dependency of EB on interfacial spins, which could guide the design of giant-EB-effect materials.

10.
RSC Adv ; 11(54): 34410-34415, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497264

RESUMEN

Monolayer two-dimensional transition metal dichalcogenides (TMDs) with direct band gaps, such as MoS2, have received great attention from researchers due to their peculiar band structure and physical properties. However, their extremely small thickness (0.65 nm for MoS2) results in a critically low light absorption efficiency, thus limiting their optoelectronic applications. To achieve the enhancement of the light-matter interaction in MoS2, a resonant Al/AAO (anodic alumina oxide template)/MoS2 trilayer nanocavity structure was designed and implemented in the present study. In such a system, the appropriate change in pore size and pore depth of the AAO template via control of the growth conditions allows one to adjust the thickness and refractive index of the dielectric layer (AAO). This nanocavity structure provides a possible way to regulate the light-matter interaction of MoS2 film.

11.
Front Pharmacol ; 12: 791059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975487

RESUMEN

Background: The dysfunctional blood-brain barrier (BBB)-glymphatic system is responsible for triggering intracerebral amyloid-beta peptide (Aß) accumulation and acts as the key link between ischemic stroke and dementia dominated by Alzheimer's disease (AD). Recently, pyroptosis in cerebral ischemia and reperfusion (I/R) injury is demonstrated as a considerable mechanism causing BBB-glymphatic dysfunctions and Aß acute accumulation in the brain. Targeting glial pyroptosis to protect BBB-glymphatic functions after cerebral I/R could offer a new viewpoint to prevent Aß accumulation and poststroke dementia. Yi-Zhi-Fang-Dai formula (YZFDF) is an herbal prescription used to cure dementia with multiple effects of regulating inflammatory responses and protecting the BBB against toxic Aß-induced damage. Hence, YZFDF potentially possesses neuroprotective effects against cerebral I/R injury and the early pathology of poststroke dementia, which evokes our current study. Objectives: The present study was designed to confirm the potential efficacy of YZFDF against cerebral I/R injury and explore the possible mechanism associated with alleviating Aß acute accumulation. Methods: The models of cerebral I/R injury in rats were built by the method of middle cerebral artery occlusion/reperfusion (MCAO/R). First, neurological function assessment and cerebral infarct measurement were used for confirming the efficacy of YZFDF on cerebral I/R injury, and the optimal dosage (YZFDF-H) was selected to conduct the experiments, which included Western blotting detections of pyroptosis, Aß1-42 oligomers, and NeuN, immunofluorescence observations of glial pyroptosis, aquaporin-4 (AQP-4), and Aß locations, brain water content measurement, SMI 71 (a specific marker for BBB)/AQP-4 immunohistochemistry, and Nissl staining to further evaluate BBB-glymphatic functions and neuronal damage. Results: YZFDF obviously alleviated neurological deficits and cerebral infarct after cerebral I/R in rats. Furthermore, YZFDF could inactivate pyroptosis signaling via inhibiting caspase-1/11 activation and gasdermin D cleavage, ameliorate glial pyroptosis and neuroinflammation, protect against BBB collapse and AQP-4 depolarization, prevent Aß acute accumulation and Aß1-42 oligomers formation, and reduce neuronal damage and increase neurons survival after reperfusion. Conclusion: Our study indicated that YZFDF could exert neuroprotective effects on cerebral I/R injury and prevent Aß acute accumulation in the brain after cerebral I/R associated with inhibiting neuroinflammation-related pyroptosis and BBB-glymphatic dysfunctions.

12.
Materials (Basel) ; 13(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105593

RESUMEN

Vertical magnetization shift (VMS) is a special type of exchange bias effect that may lead to a revolution in future ultrahigh-density magnetic recording technology. However, there are very few reports focusing on the performance of VMS due to the unclear mechanism. In this paper, a giant vertical magnetization shift (ME) of 6.34 emu/g is reported in the Ni50Mn36Ga14 alloy. The VMS can be attributed to small ferromagnetic ordered regions formed by spin reconfiguration after field cooling, which are embedded in an antiferromagnetic matrix. The strong cooling-field dependence, temperature dependence, and training effect all corroborate the presence of spin reconfiguration and its role in the VMS. This work can enrich VMS research and increase its potential in practical applications as well.

13.
Transl Psychiatry ; 10(1): 240, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681009

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Transl Psychiatry ; 10(1): 181, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513932

RESUMEN

Stroke is a leading reason of death and long-term disability, and most studies mainly focus on efforts to protect neurons. However, failed clinical trials suggest that therapies against single target in neurons may not be sufficient and the involvement of endothelial cells and glial cells have been underestimated. Astrocytes are the major source of ApoE in the brain and endothelial cells express high level of ApoE receptors. Thus, ApoE may mediate the interaction between astrocytes and endothelial cells. To address whether and how ApoE-mediated astrocytes-endothelial cells interaction contributes to the pathogenesis of stroke, we used oxygen and glucose deprivation-reoxygenation (OGD-R) as a stroke model and investigated the effects of OGD-R on astrocytes-endothelial cell co-cultures in the current study. We find that OGD-R leads to various damages to endothelial cells, including compromised cell viability, increased ROS level, enhanced caspase activity, and higher apoptotic rate. Meanwhile, mouse astrocytes could secrete ApoE to activate PI3K/eNOS signaling in endothelial cells to prevent OGD-R induced injuries. In addition, OGD-R induces down-regulation of ApoE in astrocyte-endothelial cell co-cultures while melatonin restores astrocytic ApoE expression via pCREB pathway and protects endothelial cell in OGD-R treated co-cultures. Our study provides evidence that astrocytes could protect endothelial cells via ApoE in OGD-R condition and Melatonin could induce ApoE expression to protect endothelial cells.


Asunto(s)
Glucosa , Melatonina , Animales , Apolipoproteínas E , Astrocitos , Células Cultivadas , Células Endoteliales , Melatonina/farmacología , Ratones , Oxígeno
15.
Biochem Biophys Res Commun ; 526(3): 553-559, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32245616

RESUMEN

BACKGROUND: Inflammasome activation and followed by the release of proinflammatory cytokines play a pivotal role in the development and progression of depression. However, the involvement of gasdermin D (GSDMD)-mediated pyroptosis in inflammasome-associated depression has not been studied. The present study aimed to determine the involvement of pyroptosis in the development of depression. METHODS: The rat depressive model was established by the administration of monosodium glutamate (MSG) in postnatal rats. Minocycline (an anti-inflammatory agent) and VX-765 (a specific inhibitor of caspase-1) were given as intervention treatments when rats were two-month-old. Rat depressive behaviors were evaluated by behavioral tests, including open field test, sucrose preference test, and forced swim test. Rat hippocampi were collected for western blotting and immunofluorescence examination. RESULTS: MSG administration induced depressive-like behavior in rats. MSG upregulated protein presences of caspase-1, GSDMD, interleukin-1ß (IL-1ß), interleukin-18 (IL-18), NLR pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), high mobility group box 1 protein (HMGB1), and the receptor for advanced glycation end products (RAGE) in the hippocampus. Protein presences of HMGB1, NLRP3 and GSDMD were upregulated in Olig2+ oligodendrocytes in the hippocampus. The data suggest that both HMGB1/RAGE/NLRP3 signalings and GSDMD-dependent pyroptosis were activated. Both minocycline and VX-765 treatments improved depressive-like behaviors. Minocycline treatment significantly reduced both HMGB1/RAGE/NLRP3 inflammasome signalings and GSDMD-dependent pyroptosis. VX-765 downregulated GSDMD-dependent pyroptosis, but not HMGB1/RAGE signalings, indicating that GSDMD-dependent pyroptosis is a key player in the progress of depression. CONCLUSION: In rats hippocampus, NLRP3 inflammasome activates GSDMD mediated-pyroptosis in the hippocampus of MSG-induced depressive rats.


Asunto(s)
Antidepresivos/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico , Inflamasomas/metabolismo , Minociclina/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Trastorno Depresivo/inducido químicamente , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Glutamato de Sodio
16.
Phytother Res ; 33(9): 2329-2336, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31243840

RESUMEN

Bilobalide (BB), a constituent of the Ginkgo biloba extract, is a neuroprotective agent with multiple mechanisms of action. To further explore the potential therapeutic effects of BB in stroke, we investigated its effects on primary astrocytes using the oxygen and glucose deprivation-reoxygenation (OGD-R) model. Cell viability was measured by lactate dehydrogenase release assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell death was measured by annexin 5 conjgated with fluorescein isothiocyanate (V-FITC) assay, and reactive oxygen species (ROS) production was measured by 2',7'-Dichlorodihydrofluorescein Diacetate (DCFH-DA) probe. Manganese superoxide dismutase (MnSOD) expression was measured by western blot and immunofluorescence. Mitochondrial membrane potential was monitored using JC-1 staining. Our results show that OGD-R downregulated MnSOD and impaired mitochondrial function, which further enhanced ROS production in primary astrocytes. As a result, cell viability was compromised, and cell death increased. BB treatment protected astrocytes from those injuries mainly by restoring MnSOD level as MnSOD inhibitor abolished the effects of BB. In conclusion, we demonstrated that OGD-R induced astrocytic injury, but BB increased the expression of MnSOD, the ROS scavenger, to reverse the exacerbated astrocytic injury.


Asunto(s)
Astrocitos/efectos de los fármacos , Ciclopentanos/uso terapéutico , Furanos/uso terapéutico , Ginkgólidos/uso terapéutico , Glucosa/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Oxígeno/metabolismo , Extractos Vegetales/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Ciclopentanos/farmacología , Furanos/farmacología , Ginkgo biloba , Ginkgólidos/farmacología , Humanos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología
17.
Mol Ther Nucleic Acids ; 16: 302-312, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30959405

RESUMEN

ß-amyloid (Aß) plays an essential role in the pathogenesis of Alzheimer's disease (AD). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is indispensable for Aß production, and knockout of BACE1 has no overt phenotypes in mouse. Thus, fine modulation of BACE1 may be a safe and effective treatment for AD patients. However, the large active site of BACE1 makes it challenging to target BACE1 with classical small-molecule inhibitors. DNA aptamer can have high affinity and specificity against diverse targets, and it provides an alternative strategy to target BACE1. In this study, we used a novel cell-systematic evolution of ligands by exponential enrichment (SELEX) strategy to select specific DNA aptamers optimized to target BACE1 under physiological status. After 17 rounds of selection, we identified two DNA aptamers against BACE1: BI1 and BI2. The identified aptamers interacted with BACE1 in pull-down assay, inhibited BACE1 activity in in vitro fluorescence resonance energy transfer (FRET) assay and HEK293-APP stable cell line, reduced Aß in the culture medium of HEK293-amyloid protein precursor (APP) stable cell line and APP-PS1 primary cultured neurons, and rescued Aß-induced neuronal deficiency in APP-PS1 primary cultured neurons. In contrast, the identified aptamers had no effect on α- or γ-secretase. In addition, cholesteryl tetraetylene glycol (TEG) modification further improved the potency of the identified aptamers. Our study suggests that it is feasible and effective to target BACE1 with DNA aptamers, and the therapeutic potential of the identified aptamers deserves further investigation.

18.
Artículo en Inglés | MEDLINE | ID: mdl-30498516

RESUMEN

OBJECTS: Sheng-Di-Da-Huang Decoction was used as an effective hemostatic agent in ancient China. However, its therapeutic mechanism is still not clear. Inflammatory injury plays a critical role in ICH-induced secondary brain injury. After hemolysis, hematoma components are released, inducing microglial activation via TLR4, which initiates the activation of transcription factors (such as NF-κB) to regulate expression of proinflammatory cytokine genes. This study aimed to verify the anti-inflammatory effects of Sheng-Di-Da-Huang Decoction on ICH rats. MATERIALS AND METHODS: Intracerebral hemorrhage was induced by injection of bacterial collagenase (0.2 U) in rats. Neurological deficits, brain water content, Evans blue extravasation, expression of TLR4, NF-κB, Iba-1 positive cells (activated microglia), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were examined 1, 3, 7, and 14 days after collagenase injection. MR images were also studied. RESULTS: Sheng-Di-Da-Huang Decoction remarkably improved neurological function, reduced brain water content as well as Evans blue extravasation, downregulated expression of TLR4, NF-κB, TNF-α, and IL-1ß, and inhibited microglial activation. CONCLUSIONS: Sheng-Di-Da-Huang Decoction reduced inflammation reaction after ICH through inhibited inflammation expressed in microglia.

19.
Sci Rep ; 8(1): 9886, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959371

RESUMEN

As a classical prescription of Traditional Chinese medicine, the Jia-Jian-Di-Huang-Yin-Zi (JJDHYZ) decoction has long been used to treat movement disorders. The present study evaluated the effects of JJDHYZ on dopaminergic (DA) neurons and their survival-enhancing microenvironment as well as the possible mechanisms involved using a mouse model of Parkinson's disease. In MPTP-lesioned mice, a high dosage of JJDHYZ (34 g/kg/day) attenuated the loss of DA neurons, reversed the dopamine depletion, and improved the expression of glial-derived neurotrophic factor (GDNF) compared to the untreated model group. JJDHYZ also protected the ultrastructure of the blood-brain barrier (BBB) and tight junction proteins by inhibiting the activation of microglia and astrocytes besides the increase in three types of matrix metalloproteinases in the substantia nigra. In conclusion, the JJDHYZ-high dosage (JJDHYZ-H) group exhibited the neuroprotection of DA neurons, and the underlying mechanism may be related to the survival-enhancing microenvironment of the DA neurons.


Asunto(s)
Microambiente Celular/efectos de los fármacos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/metabolismo , Astrocitos/citología , Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Quimiocina CCL2/metabolismo , Quimiocina CCL4/metabolismo , Claudina-5/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Interleucina-23/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microvasos/efectos de los fármacos , Ocludina/metabolismo , Permeabilidad/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-29576796

RESUMEN

We investigated the effects of Apocynum venetum leaf extract (AVLE) on depressive behaviors and neuronal apoptosis in a chronic unpredictable mild stress (CUMS) rat model of depression. Rats were randomly divided into six groups: control, chronic unpredictable mild stress, fluoxetine, AVLE30, AVLE60, and AVLE120. Except for the control group, all rats were submitted to chronic unpredictable mild stress paradigms for four weeks to induce depressive behavior. Neuronal apoptosis was assessed by the terminal deoxynucleotidyl transferase- (TDT-) mediated dUTP-biotin nick end-labeling (TUNEL) method. The expression levels of apoptosis-related proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-2 Associated X Protein (Bax), cysteine-aspartic acid protease-3 and protease-9 (caspase-3 and caspase-9), cytochrome c (cyt-C), brain-derived neurotrophic factor (BDNF), and cAMP-response element binding (CREB) protein, were evaluated by western blot. Treatment with AVLE (60 or 120 mg/kg/day) significantly improved depressive behavior. Increased apoptosis of hippocampus and cortical neurons were observed in CUMS rats, while 120 mg/kg/day of AVLE significantly reversed these changes and achieved the best antidepressant-like effects among the doses tested. Moreover, AVLE (120 mg/kg) significantly increased Bcl-2, BDNF, and CREB protein expression and decreased Bax, cyt-C, and caspase family protein expression. Our results indicate that AVLE has potent antidepressant activity, likely due to its ability to suppress neuronal apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...