Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(1): uhac222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643743

RESUMEN

Gibberellins (GAs) play crucial roles in a wide range of developmental processes and stress responses in plants. However, the roles of GA-responsive genes in tomato (Solanum lycopersicum) fruit development remain largely unknown. Here, we identify 17 GASA (Gibberellic Acid-Stimulated Arabidopsis) family genes in tomato. These genes encode proteins with a cleavable signal peptide at their N terminus and a conserved GASA domain at their C terminus. The expression levels of all tomato GASA family genes were responsive to exogenous GA treatment, but adding ethylene eliminated this effect. Comprehensive expression profiling of SlGASA family genes showed that SlGASA1 follows a ripening-associated expression pattern, with low expression levels during fruit ripening, suggesting it plays a negative role in regulating ripening. Overexpressing SlGASA1 using a ripening-specific promoter delayed the onset of fruit ripening, whereas SlGASA1-knockdown fruits displayed accelerated ripening. Consistent with their delayed ripening, SlGASA1-overexpressing fruits showed significantly reduced ethylene production and carotenoid contents compared to the wild type. Moreover, ripening-related genes were downregulated in SlGASA1-overexpressing fruits but upregulated in SlGASA1-knockdown fruits compared to the wild type. Yeast two-hybrid, co-immunoprecipitation, transactivation, and DNA pull-down assays indicated that SlGASA1 interacts with the key ripening regulator FRUITFULL1 and represses its activation of the ethylene biosynthesis genes ACS2 and ACO1. Our findings shed new light on the role and mode of action of a GA-responsive gene in tomato fruit ripening.

2.
Zookeys ; 1084: 65-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35233165

RESUMEN

The ultrastructure of androconia and their surrounding scales of nine species in nine genera across four subfamilies of Hesperiidae is studied. This provides a basis for the classification and identification of some genera and species. The wing surface of the scent glands patches was cut with scissors, observed and photographed under an S-4800 scanning electron microscope (at 10.0 kV accelerated pressure). There were significant differences in the types of scent glands patches across subfamilies. The scent glands patches of Pyrginae and Dudaminae are mainly in the costal fold of the forewing, while those of Coeliadinae and Hesperiinae are mainly in the line or circular stigma on the wing surface. The length, breadth and aperture of the androconia were further measured and the data are analysed by variance and multiple comparisons. There are significant differences amongst the subfamilies, except for Dudaminae and Pyrginae. In Hesperiinae, Telicotacolon (Fabricius, 1775) and Ampittiavirgata (Leech, 1890) have no significant difference in the aperture of the androconia, but are significantly different from Thymelicusleoninus (Butler, 1878). There are significant differences in the aperture between Pyrgusalveus's (Hübner, 1803) androconium and the second androconium of Loboclabifasciata (Bremer & Grey, 1853), but not with the first androconium of Loboclabifasciata. The morphology of androconia in the scent glands patches is very similar in Hesperiinae; all are rod-shaped and paddle-like. The scale types around the scent glands patches are different, but there are one or two similar types. To a certain extent, the aperture of the androconia reflects the genetic relationships between subfamilies and species. The differences in scale type and structure of scent glands patches can be used as a reference for the classification of subfamilies and genera in Hesperiidae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA