Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.549
Filtrar
1.
Nat Commun ; 15(1): 6559, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095340

RESUMEN

Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C2v and C4v symmetry denoted as C2v-OC-4 and C4v-OC-4, respectively. Heating induces the efficient stepwise conversion of C2v- to C4v-OC-4 via a Cs-symmetric intermediate (Cs-OC-4). It differs from the typical transition state-mediated processes of simple C-C single bond rotations. Hydrolysis and further esterification with a countercation dependence promote the generation of C2v- and Cs-OC-4 from C4v-OC-4. In contrast to C2v-OC-4, C4v-OC-4 can bind linear guests to form pseudo-rotaxans, or bind C60 or C70 efficiently. The present study highlights the differences in recognition behavior that can result from conformational interconversion, as well as providing insights into the basic parameters that govern coupled molecular rotations.

2.
J Chem Inf Model ; 64(15): 6216-6229, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39092854

RESUMEN

The critical importance of accurately predicting mutations in protein metal-binding sites for advancing drug discovery and enhancing disease diagnostic processes cannot be overstated. In response to this imperative, MetalTrans emerges as an accurate predictor for disease-associated mutations in protein metal-binding sites. The core innovation of MetalTrans lies in its seamless integration of multifeature splicing with the Transformer framework, a strategy that ensures exhaustive feature extraction. Central to MetalTrans's effectiveness is its deep feature combination strategy, which merges evolutionary-scale modeling amino acid embeddings with ProtTrans embeddings, thus shedding light on the biochemical properties of proteins. Employing the Transformer component, MetalTrans leverages the self-attention mechanism to delve into higher-level representations. Utilizing mutation site information for feature fusion not only enriches the feature set but also sidesteps the common pitfall of overestimation linked to protein sequence-based predictions. This nuanced approach to feature fusion is a key differentiator, enabling MetalTrans to outperform existing methods significantly, as evidenced by comparative analyses. Our evaluations across varied metal binding site data sets (specifically Zn, Ca, Mg, and Mix) underscore MetalTrans's superior performance, which achieved the average AUC values of 0.971, 0.965, 0.980, and 0.945 on multiple 5-fold cross-validation, respectively. Remarkably, against the multichannel convolutional neural network method on a benchmark independent test set, MetalTrans demonstrated unparalleled robustness and superiority, boasting the AUC score of 0.998 on multiple 5-fold cross-validation. Our comprehensive examination of the predicted outcomes further confirms the effectiveness of the model. The source codes, data sets, and prediction results for MetalTrans can be accessed for academic usage at https://github.com/EduardWang/MetalTrans.


Asunto(s)
Metales , Mutación , Sitios de Unión , Metales/química , Metales/metabolismo , Humanos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Modelos Moleculares , Biología Computacional/métodos , Bases de Datos de Proteínas
3.
Anal Methods ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145405

RESUMEN

Sensitive, convenient and rapid detection and subtyping of influenza viruses are crucial for timely treatment and management of infected people. Compared with antigen detection, nucleic acid detection has higher specificity and can shorten the detection window. Hence, in this work, we improved the lateral flow assay (LFA, one of the most promising user-friendly and on-site methods) to achieve detection and subtyping of H1N1, H3N2 and H9N2 influenza virus nucleic acids. Firstly, the antigen-antibody recognition mode was transformed into a nucleic acid hybridization reaction. Secondly, Fe3O4-Au heterodimer nanoparticles were prepared to replace frequently used Au nanoparticles to obtain better coloration. Thirdly, four lines were arranged on the LFA strip, which were three test (T) lines and one control (C) line. Three T lines were respectively sprayed by the DNA sequences complementary to one end of H1N1, H3N2 and H9N2 influenza virus nucleic acids, while Fe3O4-Au nanoparticles were respectively coupled with the DNA sequences complementary to the other end of H1N1, H3N2 and H9N2 nucleic acids to construct three kinds of probes. The C line was sprayed by the complementary sequences to the DNAs on all three kinds of probes. In the detection, by hybridization reaction, the probes were combined with their target nucleic acids which were captured by the corresponding T lines to form color bands. Finally, according to the position of the color bands and their grey intensity, simultaneous qualitative and semi-quantitative detection of the three influenza virus nucleic acids was realized. The detection results showed that this multi-channel LFA had good specificity, and there was no significant cross reactivity among the three subtypes of influenza viruses. The simultaneous detection achieved comparable detection limits with individual detections. Therefore, this multi-channel LFA had good application potential for sensitive and rapid detection and subtyping of influenza viruses.

4.
World J Gastrointest Surg ; 16(7): 2145-2156, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39087101

RESUMEN

BACKGROUND: Patients with different stages of colorectal cancer (CRC) exhibit different abdominal computed tomography (CT) signs. Therefore, the influence of CT signs on CRC prognosis must be determined. AIM: To observe abdominal CT signs in patients with CRC and analyze the correlation between the CT signs and postoperative prognosis. METHODS: The clinical history and CT imaging results of 88 patients with CRC who underwent radical surgery at Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University were retrospectively analyzed. Univariate and multivariate Cox regression analyses were used to explore the independent risk factors for postoperative death in patients with CRC. The three-year survival rate was analyzed using the Kaplan-Meier curve, and the correlation between postoperative survival time and abdominal CT signs in patients with CRC was analyzed using Spearman correlation analysis. RESULTS: For patients with CRC, the three-year survival rate was 73.86%. The death group exhibited more severe characteristics than the survival group. A multivariate Cox regression model analysis showed that body mass index (BMI), degree of periintestinal infiltration, tumor size, and lymph node CT value were independent factors influencing postoperative death (P < 0.05 for all). Patients with characteristics typical to the death group had a low three-year survival rate (log-rank χ 2 = 66.487, 11.346, 12.500, and 27.672, respectively, P < 0.05 for all). The survival time of CRC patients was negatively correlated with BMI, degree of periintestinal infiltration, tumor size, lymph node CT value, mean tumor long-axis diameter, and mean tumor short-axis diameter (r = -0.559, 0.679, -0.430, -0.585, -0.425, and -0.385, respectively, P < 0.05 for all). BMI was positively correlated with the degree of periintestinal invasion, lymph node CT value, and mean tumor short-axis diameter (r = 0.303, 0.431, and 0.437, respectively, P < 0.05 for all). CONCLUSION: The degree of periintestinal infiltration, tumor size, and lymph node CT value are crucial for evaluating the prognosis of patients with CRC.

5.
CNS Neurosci Ther ; 30(8): e14896, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107944

RESUMEN

PURPOSE: To explore the microstate characteristics and underlying brain network activity of Ménière's disease (MD) patients based on high-density electroencephalography (EEG), elucidate the association between microstate dynamics and clinical manifestation, and explore the potential of EEG microstate features as future neurobiomarkers for MD. METHODS: Thirty-two patients diagnosed with MD and 29 healthy controls (HC) matched for demographic characteristics were included in the study. Dysfunction and subjective symptom severity were assessed by neuropsychological questionnaires, pure tone audiometry, and vestibular function tests. Resting-state EEG recordings were obtained using a 256-channel EEG system, and the electric field topographies were clustered into four dominant microstate classes (A, B, C, and D). The dynamic parameters of each microstate were analyzed and utilized as input for a support vector machine (SVM) classifier to identify significant microstate signatures associated with MD. The clinical significance was further explored through Spearman correlation analysis. RESULTS: MD patients exhibited an increased presence of microstate class C and a decreased frequency of transitions between microstate class A and B, as well as between class A and D. The transitions from microstate class A to C were also elevated. Further analysis revealed a positive correlation between equilibrium scores and the transitions from microstate class A to C under somatosensory challenging conditions. Conversely, transitions between class A and B were negatively correlated with vertigo symptoms. No significant correlations were detected between these characteristics and auditory test results or emotional scores. Utilizing the microstate features identified via sequential backward selection, the linear SVM classifier achieved a sensitivity of 86.21% and a specificity of 90.61% in distinguishing MD patients from HC. CONCLUSIONS: We identified several EEG microstate characteristics in MD patients that facilitate postural control yet exacerbate subjective symptoms, and effectively discriminate MD from HC. The microstate features may offer a new approach for optimizing cognitive compensation strategies and exploring potential neurobiological markers in MD.


Asunto(s)
Electroencefalografía , Enfermedad de Meniere , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Enfermedad de Meniere/fisiopatología , Enfermedad de Meniere/diagnóstico , Enfermedad de Meniere/psicología , Persona de Mediana Edad , Adulto , Cognición/fisiología , Adaptación Fisiológica/fisiología , Máquina de Vectores de Soporte , Pruebas Neuropsicológicas , Anciano
6.
Adv Sci (Weinh) ; : e2402550, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119875

RESUMEN

Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.

7.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956558

RESUMEN

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , Femenino , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Persona de Mediana Edad , Proliferación Celular/genética
8.
Chin J Integr Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958885

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.

9.
ACS Cent Sci ; 10(6): 1148-1155, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947209

RESUMEN

Electron transport chains (ETCs) are ubiquitous in nearly all living systems. Replicating the complexity and control inherent in these multicomponent systems using ensembles of small molecules opens up promising avenues for molecular therapeutics, catalyst design, and the development of innovative energy conversion and storage systems. Here, we present a noncovalent, multistep artificial electron transport chains comprising cyclo[8]pyrrole (1), a meso-aryl hexaphyrin(1.0.1.0.1.0) (naphthorosarin 2), and the small molecules I2 and trifluoroacetic acid (TFA). Specifically, we show that 1) electron transfer occurs from 1 to give I3 - upon the addition of I2, 2) proton-coupled electron transfer (PCET) from 1 to give H 3 2 •2+ and H 3 2 + upon the addition of TFA to a dichloromethane mixture of 1 and 2, and 3) that further, stepwise treatment of 1 and 2 with I2 and TFA promotes electron transport from 1 to give first I3 - and then H 3 2 •2+ and H 3 2 + . The present findings are substantiated through UV-vis-NIR, 1H NMR, electron paramagnetic resonance (EPR) spectroscopic analyses, cyclic voltammetry studies, and DFT calculations. Single-crystal structure analyses were used to characterize compounds in varying redox states.

10.
World J Stem Cells ; 16(6): 615-618, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38948100

RESUMEN

Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies, and pretreatment has proven to enhance cell vitality and function. In a recent publication, Li et al explored a new combination of pretreatment conditions. Here, we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition.

11.
Heliyon ; 10(12): e32516, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994101

RESUMEN

Background: Many patients with atrial fibrillation (AF) discontinued oral anticoagulation (OAC) therapy after successful catheter ablation. We aimed to determine the real-world risks and consequences of discontinuing OAC use after catheter ablation for AF. Methods: Patients who underwent successful catheter ablation for AF from January 2004 to December 2020 were divided into continued long-term OAC (On-OAC, n = 1062) and discontinued (Off-OAC, n = 1055) groups. The long-term outcomes including thromboembolic events, major bleeding, all-cause mortality and major adverse cardiovascular events (MACE), were compared between the two groups. Results: The CHA2DS2-VASc score was 3.44 ± 1.12. After a mean follow-up of 37.09 months, thromboembolism risk was higher and major bleeding risk was lower in the Off-OAC than in the On-OAC group (Both log-rank P < 0.001). CHA2DS2-VASc score-stratified subgroup analysis showed similar cumulative event rates between the two groups in men and women with scores of 2 and 3 (intermediate risk for stroke), respectively, (P > 0.05), except for a higher major bleeding rate in the On-OAC group (P = 0.002). Patients at high risk for stroke (men and women with scores ≥3 and ≥ 4) had better non-thromboembolic and non-MACE results (Both log-rank P < 0.05). Conclusion: Men with a CHA2DS2-VASc score of 2 and women with a score of 3 had a relatively low incidence of stroke events after successful catheter ablation for AF and may be safe for anticoagulation cessation. Greater benefits from long-term OAC were observed in men with CHA2DS2-VASc score ≥3 and women with score ≥4.

12.
Anticancer Drugs ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39016842

RESUMEN

The current treatment for osteosarcoma (OS) is based on surgery combined with systemic chemotherapy, however, gene therapy has been hypothesized to improve patient survival rates. The density-enhanced protein domain 1 protein (DEPDC1) functions as a crucial determinant in the advancement of OS, which is highly expressed in OS cells. The current study was designed to delve into the effect and mechanism of DEPDC1 and phosphotyrosine-picked threonine tyrosine kinase (TTK) in OS. The expression of DEPDC1 and TTK in OS cells was detected by western blotting. Furthermore, the assessment of glycolysis encompassed the quantification of extracellular acidification rate, glucose uptake rate, lactate concentration, and the expression of glucose transporter 1, hexokinase 2, and pyruvate kinase M2. Finally, the functions of DEPDC1 and TTK in autophagy and ras-extracellular signal-regulated kinase signaling were determined by western blotting after interfering with DEPDC1 in SaOS-2 cells. The results revealed that DEPDC1 and TTK were upregulated in OS cell lines and interfering with DEPDC1 inhibited glycolysis and autophagy in OS cells. Furthermore, the STRING database suggested that DEPDC1 and TTK perform targeted binding. Notably, the results of the present study revealed that DEPDC1 upregulated RAS expression through TTK and enhanced ERK activity, thereby affecting glycolysis and autophagy in OS cells. Collectively, the present investigation demonstrated that DEPDC1 affected autophagy-dependent glycolysis levels of OS cells by regulating RAS/ERK signaling through TTK.

13.
Int J Biol Macromol ; 277(Pt 2): 134225, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074710

RESUMEN

The structure of glycogen α particles in healthy mouse liver has two states: stability and fragility. In contrast, glycogen α particles in diabetic liver present consistent fragility, which may exacerbate hyperglycemia. Currently, the molecular mechanism behind glycogen structural alteration is still unclear. In this study, we characterized the fine molecular structure of liver glycogen α particles in healthy mice under time-restricted feeding (TRF) mode during a 24-h cycle. Then, differentially expressed genes (DEGs) in the liver during daytime and nighttime were revealed via transcriptomics, which identified that the key downregulated DEGs were mainly related to insulin secretion in daytime. Furthermore, GO annotation and KEGG pathway enrichment found that negative regulation of the glycogen catabolic process and insulin secretion process were significantly downregulated in the daytime. Therefore, transcriptomic analyses indicated that the structural stability of glycogen α particles might be correlated with the glycogen degradation process via insulin secretion downregulation. Further molecular experiments confirmed the significant upregulation of glycogen phosphorylase (PYGL), phosphorylated PYGL (p-PYGL), and glycogen debranching enzyme (AGL) at the protein level during the daytime. Overall, we concluded that the downregulation of insulin secretion in the daytime under TRF mode facilitated glycogenolysis, contributing to the structural stability of glycogen α-particles.

14.
Cell Mol Life Sci ; 81(1): 321, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078462

RESUMEN

Allergic asthma is a complex inflammatory disorder predominantly orchestrated by T helper 2 (Th2) lymphocytes. The anti-inflammatory protein Clara Cell 10-kDa (CC10), also known as secretoglobin family 1A member 1 (SCGB1A1), shows promise in modulating respiratory diseases. However, its precise role in asthma remains unclear. This study examines the potential of CC10 to suppress allergic asthma inflammation, specifically assessing its regulatory effects on Th2 cell responses and dendritic cells (DCs). Lower CC10 levels in asthma were observed and correlated with increased IgE and lymphocytes. Cc10-/- mice exhibited exacerbated allergic airway inflammation marked by increased inflammatory cell infiltration, Th2 cytokines, serum antigen-specific IgE levels, and airway hyperresponsiveness (AHR) in house dust mite (HDM)-induced models. Conversely, recombinant CC10 significantly attenuated these inflammatory responses. Intriguingly, CC10 did not directly inhibit Th cell activation but significantly downregulated the population of CD11b+CD103- DCs subsets in lungs of asthmatic mice and modulated the immune activation functions of DCs through NF-κB signaling pathway. The mixed lymphocyte response assay revealed that DCs mediated the suppressive effect of CC10 on Th2 cell responses. Collectively, CC10 profoundly mitigates Th2-type allergic inflammation in asthma by modulating lung DC phenotype and functions, highlighting its therapeutic potential for inflammatory airway conditions and other related immunological disorders.


Asunto(s)
Asma , Células Dendríticas , Pulmón , Células Th2 , Uteroglobina , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Asma/inmunología , Asma/patología , Células Th2/inmunología , Células Th2/metabolismo , Uteroglobina/genética , Uteroglobina/metabolismo , Ratones , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamación/patología , Inflamación/inmunología , Inflamación/metabolismo , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Pyroglyphidae/inmunología , FN-kappa B/metabolismo , Citocinas/metabolismo , Femenino , Ratones Endogámicos BALB C
15.
Mol Plant ; 17(8): 1272-1288, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38956872

RESUMEN

The discovery of a wild abortive-type (WA) cytoplasmic male sterile (CMS) line and breeding its restorer line have led to the commercialization of three-line hybrid rice, contributing considerably to global food security. However, the molecular mechanisms underlying fertility abortion and the restoration of CMS-WA lines remain largely elusive. In this study, we cloned a restorer gene, Rf20, following a genome-wide association study analysis of the core parent lines of three-line hybrid rice. We found that Rf20 was present in all core parental lines, but different haplotypes and structural variants of its gene resulted in differences in Rf20 expression levels between sterile and restored lines. Rf20 could restore pollen fertility in the CMS-WA line and was found to be responsible for fertility restoration in some CMS lines under high temperatures. In addition, we found that Rf20 encodes a pentatricopeptide repeat protein that competes with WA352 for binding with COX11. This interaction enhances COX11's function as a scavenger of reactive oxygen species, which in turn restores pollen fertility. Collectively, our study suggests a new action mode for pentatricopeptide repeat proteins in the fertility restoration of CMS lines, providing an essential theoretical basis for breeding robust restorer lines and for overcoming high temperature-induced fertility recovery of some CMS lines.


Asunto(s)
Oryza , Infertilidad Vegetal , Proteínas de Plantas , Polen , Oryza/genética , Oryza/fisiología , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Fertilidad/genética , Citoplasma/metabolismo , Citoplasma/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica de las Plantas
16.
Neural Netw ; 178: 106478, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996790

RESUMEN

ALS (Amyotrophic Lateral Sclerosis) is a neurodegenerative disorder causing profound physical disability that severely impairs a patient's life expectancy and quality of life. It also leads to muscular atrophy and progressive weakness of muscles due to insufficient nutrition in the body. At present, there are no disease-modifying therapies to cure ALS, and there is a lack of preventive tools. The general clinical assessments are based on symptom reports, neurophysiological tests, neurological examinations, and neuroimaging. But, these techniques possess various limitations of low reliability, lack of standardized protocols, and lack of sensitivity, especially in the early stages of disease. So, effective methods are required to detect the progression of the disease and minimize the suffering of patients. Extensive studies concentrated on investigating the causes of neurological disease, which creates a barrier to precise identification and classification of genes accompanied with ALS disease. Hence, the proposed system implements a deep RSFFNNCNN (Resemble Single Feed Forward Neural Network-Convolutional Neural Network) algorithm to effectively classify the clinical associations of ALS. It involves the addition of custom weights to the kernel initializer and neutralizer 'k' parameter to each hidden layer in the network. This is done to increase the stability and learning ability of the classifier. Additionally, the comparison of the proposed approach is performed with SFNN (Single Feed NN) and ML (Machine Learning) based algorithms, namely, NB (Naïve Bayes), XGBoost (Extreme Gradient Boosting) and RF (Random Forest), to estimate the efficacy of the proposed model. The reliability of the proposed algorithm is measured by deploying performance metrics such as precision, recall, F1 score, and accuracy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Redes Neurales de la Computación , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Humanos , Aprendizaje Profundo , Algoritmos , Reproducibilidad de los Resultados , Aprendizaje Automático
17.
Int Immunopharmacol ; 139: 112707, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39032472

RESUMEN

Telmisartan, an angiotensin II type 1 receptor (AT1R) blocker, exhibits broad anti-tumor activity. However, in vitro, anti-proliferative effects are shown at doses far beyond the therapeutic plasma concentration. Considering the role of tumor microenvironment in glioma progression, glioma-astrocyte co-cultures were employed to test the anti-tumor potential of low-dose telmisartan. When a high dose was required for a direct anti-proliferative effect on glioma cell lines, a low dose significantly inhibited glioma cell proliferation and migration in the co-culture system. Under co-culture conditions, upregulated IL-6 expression in astrocytes played a critical role in glioma progression. Silencing IL-6 in astrocytes or IL-6R in glioma cells reduced proliferation and migration. Telmisartan (5 µM) inhibited astrocytic IL-6 expression, and its anti-tumor effects were reversed by silencing IL-6 or IL-6R and inhibiting signal transducer and activator of transcription 3 (STAT3) activity in glioma cells. Moreover, the telmisartan-driven IL-6 downregulation was not imitated by losartan, an AT1R blocker with little capacity of peroxisome proliferator-activated receptor-gamma (PPARγ) activation, but was eliminated by a PPARγ antagonist, indicating that the anti-glioma effects of telmisartan rely on its PPARγ agonistic activity rather than AT1R blockade. This study highlights the importance of astrocytic IL-6-mediated paracrine signaling in glioma growth and the potential of telmisartan as an adjuvant therapy for patients with glioma, especially those with hypertension.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Astrocitos , Proliferación Celular , Técnicas de Cocultivo , Glioma , Interleucina-6 , PPAR gamma , Factor de Transcripción STAT3 , Telmisartán , Telmisartán/farmacología , Telmisartán/uso terapéutico , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Interleucina-6/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Humanos , Proliferación Celular/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , PPAR gamma/metabolismo , Comunicación Paracrina/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores de Interleucina-6/metabolismo , Losartán/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral/efectos de los fármacos
18.
Sci Total Environ ; 949: 175064, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067594

RESUMEN

Groundwater is a crucial water supply source in Chengdu City, western China, a region experiencing significant water scarcity. The sources of inorganic pollutants in groundwater and their potential health risks are of great concern. In this study, based on 156 groundwater samples collected in 2021 in the study area were analyzed for hydrochemical characterization and controlling factors. The Positive Matrix Factorization (PMF) model was used for contaminant source analysis, and Monte Carlo Simulation (MCS) combined with the Health Risk Evaluation Model (HREM) was used to quantify the health risks. The results indicate that the groundwater in the study area is predominantly of the Ca·Na-SO4·HCO3, Ca·Na-HCO3·SO4 and Ca-HCO3·SO4 types, mainly influenced by the combination of evaporation-concentration-crystallization and rock leaching-weathering. K+, Na+, and Cl- mainly originate from the weathering and dissolution of potassium feldspar and rock salt, while Ca2+, Mg2+, HCO3-, and SO42- primarily come from the weathering and dissolution of sulfate minerals. The main sources of groundwater pollution and their contributions are as follows: domestic pollution (25.6 %), dissolution-filtration-evaporation-concentration action (22.8 %), hydrogeochemical evolution (15.8 %), water-rock interactions (12.8 %), primary geologic context (12.1 %), and agricultural non-point source pollution (11.0 %). Cl- and As are the primary contributors to non-carcinogenic and carcinogenic risks, respectively. Non-carcinogenic risks are below USEPA standards, while the average carcinogenic risk for arsenic exceeded the maximum acceptable risk level thresholds by 23 and 109 times for adults and children, respectively. Non-carcinogenic and carcinogenic health risks were mainly influenced by pollutant concentrations. The primary geological background and domestic pollution contributed the most to the non-carcinogenic risk for adults (50.3 %) and children (77.1 %), and 38.2 % and 10.3 %, respectively. This study highlights the necessity of establishing a comprehensive groundwater pollution monitoring system, enhancing industrial waste management practices, and raising public awareness to mitigate contamination and ensure the sustainable use of groundwater resources in Chengdu City.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , China , Medición de Riesgo , Calidad del Agua , Humanos , Abastecimiento de Agua
19.
World J Clin Cases ; 12(21): 4609-4617, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070819

RESUMEN

BACKGROUND: Osteoporotic vertebral compression fractures (OVCFs) contribute to back pain and functional limitations in older individuals, with percutaneous vertebroplasty (PVP) emerging as a minimally invasive treatment. However, further height loss post-PVP prompts investigation into contributing factors. AIM: To investigate the factors associated with further height loss following PVP with cement augmentation in OVCF patients. METHODS: A total of 200 OVCF patients who underwent successful PVP between January 2021 and December 2022 were included in this study. "Further height loss" during 1 year of follow-up in OVCF patients with bone edema was defined as a vertical height loss of ≥ 4 mm. The study population was divided into two groups for analysis: The "No Further Height Loss group (n = 179)" and the "Further Height Loss group (n = 21)." RESULTS: In comparing two distinct groups of patients, significant differences existed in bone mineral density (BMD), vertebral compression degree, prevalence of intravertebral cleft (IVF), type of bone cement used, and cement distribution patterns. Results from binary univariate regression analysis revealed that lower BMD, the presence of IVF, cleft distribution of bone cement, and higher vertebral compression degree were all significantly associated with further height loss. Notably, the use of mineralized collagen modified-poly(methyl methacrylate) bone cement was associated with a significant reduction in the risk of further height loss. In multivariate regression analysis, lower BMD and the presence of IVF remained significantly associated with further height loss. CONCLUSION: Further height loss following PVP in OVCF patients is influenced by a complex interplay of factors, especially lower BMD and the presence of IVF. These findings underscore the importance of assessing and managing these factors when addressing height loss following PVP in OVCF patients.

20.
Cell Death Discov ; 10(1): 341, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069522

RESUMEN

Glioblastoma multiforme (GBM) is the most therapeutically challenging primary brain tumor owing to the unique physiological structure of the blood-brain barrier. Lately, research on targeted therapy for gliomas has shifted focus toward the tumor microenvironment and local immune responses. Pyroptosis is a newly identified cellular demise characterized by the release of numerous inflammatory factors. While pyroptosis shows promise in impeding the occurrence and progression of GBM, the regulatory mechanisms governing this process in gliomas still require further investigation. The function of the Enhancer of zeste homolog 2 (EZH2) in pyroptosis remains unexplored. In this study, we discovered that 3-Deazaneplanocin A (DZNep), an inhibitor of EZH2, can induce pyroptosis in GBM in vitro experiments. Moreover, our investigation unveiled that the signal transducer and activator of transcription (STAT3) could serve as a downstream regulator influenced by EZH2, impacting pyroptosis in GBM. Following treatment with DZNep and the STAT3 inhibitor (SH-4-54), there was an elevation in the levels of pyroptosis-related factors, namely NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and Gasdermin D (GSDMD). Moreover, simultaneous inhibition of both EZH2 and STAT3 led to the expression of inflammatory factors such as IL-1ß and IL-18. In summary, we have identified that EZH2 regulates pyroptosis in GBM through STAT3, and pyroptosis could potentially be targeted for immunotherapy in GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA