Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.847
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411029, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955769

RESUMEN

Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 °C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li+-solvent interaction enables mobile Li+ liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li+-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics. However, the relationship between physicochemical features and temperature-dependent kinetics properties of SEI remains vague. Herein, we propose four key thermodynamics parameters of SEI potentially influencing low-temperature electrochemistry, including electron work function, Li+ transfer barrier, surface energy, and desolvation energy. Based on the above parameters, we further define a novel descriptor, separation factor of SEI (SSEI), to quantitatively depict charge (Li+/e-) transport and solvent deprivation processes at Gr/electrolyte interface. A Li3PO4-based, inorganics-enriched SEI derived by Li difluorophosphate (LiDFP) additive exhibits the highest SSEI (4.89×103) to enable efficient Li+ conduction, e- blocking and rapid desolvation, and as a result, much suppressed Li-metal precipitation, electrolyte decomposition and Gr sheets exfoliation, thus improving low-temperature battery performances. Overall, our work originally provides visualized guides to improve low-temperature reaction kinetics/thermodynamics by constructing desirable SEI chemistry.

2.
Chem Soc Rev ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962926

RESUMEN

Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.

3.
Expert Rev Anti Infect Ther ; : 1-12, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38975666

RESUMEN

BACKGROUND: The potential of ursodeoxycholic acid (UDCA) in inhibiting angiotensin-converting enzyme 2 was demonstrated. However, conflicting evidence emerged regarding the association between UDCA and COVID-19 outcomes, prompting the need for a comprehensive investigation. RESEARCH DESIGN AND METHODS: Patients diagnosed with COVID-19 infection were retrospectively analyzed and divided into two groups: the UDCA-treated group and the control group. Kaplan-Meier recovery analysis and Cox proportional hazards models were used to evaluate the recovery time and hazard ratios. Additionally, study-level pooled analyses for multiple clinical outcomes were performed. RESULTS: In the 115-patient cohort, UDCA treatment was significantly associated with a reduced recovery time. The subgroup analysis suggests that the 300 mg subgroup had a significant (adjusted hazard ratio: 1.63 [95% CI, 1.01 to 2.60]) benefit with a shorter duration of fever. The results of pooled analyses also show that UDCA treatment can significantly reduce the incidence of severe/critical diseases in COVID-19 (adjusted odds ratio: 0.68 [95% CI, 0.50 to 0.94]). CONCLUSIONS: UDCA treatment notably improves the recovery time following an Omicron strain infection without observed safety concerns. These promising results advocate for UDCA as a viable treatment for COVID-19, paving the way for further large-scale and prospective research to explore the full potential of UDCA.

4.
Biotechnol Bioeng ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978393

RESUMEN

ß-Alanine is the only ß-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible ß-alanine producer with enhanced metabolic flux towards ß-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the ß-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L ß-alanine was achieved at 80 h. This is the highest titer of ß-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.

5.
Plant Physiol Biochem ; 214: 108925, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39002306

RESUMEN

The effect mechanism of Mn on Cd uptake by Celosia argentea was investigated via a series of hydroponics experiments. The results showed that different manganese treatments had different effects on Cd uptake by C. argentea. Mn pretreatment increased Cd uptake by root protoplasts at Cd concentrations (4 and 6 µM). Protoplasts reached peak Cd uptake rate at 6 µM Cd and 25 °C, with 67.71 ± 0.13 µM h-1 mL-1 in the control, and 77.99 ± 0.49 µM h-1 mL-1 in the 50 µM Mn pretreatment group. However, simultaneous treatment with Cd and Mn reduced the Cd2+ uptake by root protoplasts. This discrepancy may be attributed to the fact that cadmium and manganese share some transporters in root cells. The transcriptome analysis in roots revealed that ten genes (including ABCC, ABCA, ABCG, ABCB, ABC1, BZIP19, and ZIP5) were significantly upregulated in response to Mn stress (p < 0.05). These genes regulate the expression of transporters belonging to the ABC, and ZIP families, which may be involved in Cd uptake by root cells of C. argentea. Mn pretreatment upregulates the expression of Mn/Cd transporters, enhancing Cd uptake by root protoplasts. For the simultaneous treatment of Cd and Mn, inhibition of Cd uptake was due to the competition of the same transporters. These findings provide helpful insights for understanding the mechanism of Mn and Cd uptake in hyperaccumulators and give implications to improve the phytoremediation of Cd-contaminated soil by C. argentea.

6.
Biotechnol J ; 19(7): e2400287, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39014925

RESUMEN

The d-amino acid oxidase (DAAO) is pivotal in obtaining optically pure l-glufosinate (l-PPT) by converting d-glufosinate (d-PPT) to its deamination product. We screened and designed a Rasamsonia emersonii DAAO (ReDAAO), making it more suitable for oxidizing d-PPT. Using Caver 3.0, we delineated three substrate binding pockets and, via alanine scanning, identified nearby key residues. Pinpointing key residues influencing activity, we applied virtual saturation mutagenesis (VSM), and experimentally validated mutants which reduced substrate binding energy. Analysis of positive mutants revealed elongated side-chain prevalence in substrate binding pocket periphery. Although computer-aided approaches can rapidly identify advantageous mutants and guide further design, the mutations obtained in the first round may not be suitable for combination with other advantageous mutations. Therefore, each round of combination requires reasonable iteration. Employing VSM-assisted screening multiple times and after four rounds of combining mutations, we ultimately obtained a mutant, N53V/F57Q/V94R/V242R, resulting in a mutant with a 5097% increase in enzyme activity compared to the wild type. It provides valuable insights into the structural determinants of enzyme activity and introduces a novel rational design procedure.


Asunto(s)
D-Aminoácido Oxidasa , Ingeniería de Proteínas , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/química , Ingeniería de Proteínas/métodos , Especificidad por Sustrato , Mutagénesis , Mutagénesis Sitio-Dirigida/métodos , Aminobutiratos/metabolismo , Modelos Moleculares , Mutación , Sitios de Unión
7.
Nat Cell Biol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039181

RESUMEN

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin ß7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.

8.
BMC Oral Health ; 24(1): 695, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879477

RESUMEN

BACKGROUND: The status of dental caries is closely related to changes in the oral microbiome. In this study, we compared the diversity and structure of the dental plaque microbiome in children with severe early childhood caries (S-ECC) before and after general anaesthesia and outpatient treatment. METHODS: Forty children aged 3 to 5 years with S-ECC who had completed whole-mouth dental treatment under general anaesthesia (C1) or in outpatient settings (C2) were selected, 20 in each group. The basic information and oral health status of the children were recorded, and the microbial community structure and diversity of dental plaque before treatment (C1, C2), the day after treatment(C2_0D), 7 days after treatment (C1_7D, C2_7D), 1 month after treatment (C1_1M, C2_1M), and 3 months after treatment (C1_3M, C2_3M) were analysed via 16 S rRNA high-throughput sequencing technology. RESULTS: (1) The alpha diversity test showed that the flora richness in the multiappointment group was significantly greater at posttreatment than at pretreatment (P < 0.05), and the remaining alpha diversity index did not significantly differ between the 2 groups (P > 0.05). The beta diversity analysis revealed that the flora structures of the C1_7D group and the C2_3M group were significantly different from those of the other time points within the respective groups (P < 0.05). (2) The core flora existed in both the pre- and posttreatment groups, and the proportion of their flora abundance could be altered depending on the caries status of the children in both groups. Leptotrichia abundance was significantly (P < 0.05) lower at 7 days posttreatment in both the single- and multiappointment groups. Corynebacterium and Corynebacterium_matruchotii were significantly more abundant in the C1_1M and C1_3M groups than in the C1 and C1_7D groups (P < 0.05). Streptococcus, Haemophilus and Haemophilus_parainfluenzae were significantly more abundant in the C1_7D group than in the other groups (P < 0.05). CONCLUSION: A single session of treatment under general anaesthesia can cause dramatic changes in the microbial community structure and composition within 7 days after treatment, whereas treatment over multiple appointments may cause slow changes in oral flora diversity.


Asunto(s)
Caries Dental , Placa Dental , Humanos , Placa Dental/microbiología , Caries Dental/microbiología , Caries Dental/terapia , Preescolar , Masculino , Femenino , Microbiota , Anestesia General , ARN Ribosómico 16S
9.
Adv Mater ; : e2405238, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923661

RESUMEN

The ongoing tide of spent lithium-ion batteries (LIBs) urgently calls for high-value output in efficient recycling. Recently, direct regeneration has emerged as a novel recycling strategy but fails to repair the irreversible morphology and structure damage of the highly degraded polycrystalline layered oxide materials. Here, this work carries out a solid-state upcycling study for the severely cracked LiNi1-x-yCoxMnyO2 cathodes. The specific single-crystallization process during calcination is investigated and the surface rock salt phase is recognized as the intrinsic obstacle to the crystal growth of the degraded cathodes due to sluggish diffusion in the heterogeneous grain boundary. Accordingly, this work revives the fatigue rock salt phase by restoring a layered surface and successfully reshapes severely broken cathodes into the high-performance single-crystalline particles. Benefiting from morphological and structural integrity, the upcycled single-crystalline cathode materials exhibit an enhanced capacity retention rate of 93.5% after 150 cycles at 1C compared with 61.7% of the regenerated polycrystalline materials. The performance is also beyond that of the commercial cathodes even under a high cut-off voltage (4.5 V) or high operating temperature (45 °C). This work provides scientific insights for the upcycling of the highly degraded cathodes in spent LIBs.

10.
Angew Chem Int Ed Engl ; : e202409435, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945832

RESUMEN

Visualizing lithium (Li) ions and understanding Li plating/stripping processes as well as evolution of solid electrolyte interface (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were efficiently decoupled and Li ion behavior at interface between different solid-state electrolytes (SSE) was successfully detected. The innovative combining experiments of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy on Li metal anode revealed interfacial morphological/chemical evolution and decoupled Li plating/stripping process from SEI evolution. Though Li plating speed in Li10GeP2S12 (LGPS) was higher than Li3PS4 (LPS), speed of SSE decomposition was similar and ~85% interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25%). Using in situ Kelvin Probe Force Microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

11.
Nat Commun ; 15(1): 4985, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862515

RESUMEN

Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.


Asunto(s)
Aterosclerosis , Proteína 7 que Contiene Repeticiones F-Box-WD , Productos Finales de Glicación Avanzada , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteínas del Factor Nuclear 90 , Receptor para Productos Finales de Glicación Avanzada , Animales , Masculino , Ratones , Productos Finales de Glicación Avanzada/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas del Factor Nuclear 90/metabolismo , Proteínas del Factor Nuclear 90/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/genética , Ratones Endogámicos C57BL , Ubiquitinación , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Hiperglucemia/metabolismo , Hiperglucemia/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/genética , Apoptosis
12.
Biotechnol Bioeng ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822747

RESUMEN

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin ( l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin ( d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.

13.
J Agric Food Chem ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842002

RESUMEN

The nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed substitution reaction plays a pivotal role in the biosynthesis of nucleotide compounds. However, industrial applications are hindered by the low activity of NAMPTs. In this study, a novel dual-channel protein engineering strategy was developed to increase NAMPT activity by enhancing substrate accessibility. The best mutant (CpNAMPTY13G+Y15S+F76P) with a remarkable 5-fold increase in enzyme activity was obtained. By utilizing CpNAMPTY13G+Y15S+F76P as a biocatalyst, the accumulation of ß-nicotinamide mononucleotide reached as high as 19.94 g L-1 within 3 h with an impressive substrate conversion rate of 99.8%. Further analysis revealed that the newly generated substrate channel, formed through crack propagation, facilitated substrate binding and enhanced byproduct tolerance. In addition, three NAMPTs from different sources were designed based on the dual-channel protein engineering strategy, and the corresponding dual-channel mutants with improved enzyme activity were obtained, which proved the effectiveness and practicability of the approach.

14.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 113-120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855290

RESUMEN

Objective: This cross-sectional study aimed to determine the epidemiology of olfactory and gustatory dysfunctions related to COVID-19 in China. Methods: This study was conducted by 45 tertiary Grade-A hospitals in China. Online and offline questionnaire data were obtained from patients infected with COVID-19 between December 28, 2022, and February 21, 2023. The collected information included basic demographics, medical history, smoking and drinking history, vaccination history, changes in olfactory and gustatory functions before and after infection, and other postinfection symptoms, as well as the duration and improvement status of olfactory and gustatory disorders. Results: Complete questionnaires were obtained from 35,566 subjects. The overall incidence of olfactory and taste dysfunction was 67.75%. Being female or being a cigarette smoker increased the likelihood of developing olfactory and taste dysfunction. Having received four doses of the vaccine or having good oral health or being a alcohol drinker decreased the risk of such dysfunction. Before infection, the average olfactory and taste VAS scores were 8.41 and 8.51, respectively; after infection, they decreased to 3.69 and 4.29 and recovered to 5.83 and 6.55 by the time of the survey. The median duration of dysosmia and dysgeusia was 15 and 12 days, respectively, with 0.5% of patients having symptoms lasting for more than 28 days. The overall self-reported improvement rate was 59.16%. Recovery was higher in males, never smokers, those who received two or three vaccine doses, and those that had never experienced dental health issues, or chronic accompanying symptoms. Conclusions: The incidence of dysosmia and dysgeusia following infection with the SARS-CoV-2 virus is high in China. Incidence and prognosis are influenced by several factors, including sex, SARS-CoV-2 vaccination, history of head-facial trauma, nasal and oral health status, smoking and drinking history, and the persistence of accompanying symptoms.

16.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707616

RESUMEN

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Glucósidos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fenoles , Polifenoles , Estreptozocina , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Animales , Ratas , Glucósidos/farmacología , Glucósidos/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Fenoles/farmacología , Fenoles/química , Ratas Sprague-Dawley
17.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730890

RESUMEN

A modified 3D re-entrant honeycomb is designed and fabricated utilizing Laser Cladding Deposition (LCD) technology, the mechanical properties of which are systematically investigated by experimental and finite element (FE) methods. Firstly, the influences of honeycomb angle on localized deformation and the response of force are studied by an experiment. Experimental results reveal that the honeycomb angles have a significant effect on deformation and force. Secondly, a series of numerical studies are conducted to analyze stress characteristics and energy absorption under different angles (α) and velocities (v). It is evident that two variables play an important role in stress and energy. Thirdly, response surface methodology (RSM) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are implemented with high precision to solve multi-objective optimization. Finally, the final compromise solution is determined based on the fitness function, with an angle of 49.23° and an impact velocity of 16.40 m/s. Through simulation verification, the errors of energy absorption (EA) and peak crush stress (PCS) are 9.26% and 0.4%, respectively. The findings of this study offer valuable design guidance for selecting the optimal design parameters under the same mass conditions to effectively enhance the performance of the honeycomb.

18.
Angew Chem Int Ed Engl ; : e202406557, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798154

RESUMEN

The surge in lithium-ion batteries has heightened concerns regarding metal resource depletion and the environmental impact of spent batteries. Battery recycling has become paramount globally, but conventional techniques, while effective at extracting transition metals like cobalt and nickel from cathodes, often overlook widely used spent LiFePO4 due to its abundant and low-cost iron content. Direct regeneration, a promising approach for restoring deteriorated cathodes, is hindered by practicality and cost issues despite successful methods like solid-state sintering. Hence, a smart prelithiation separator based on surface-engineered sacrificial lithium agents is proposed. Benefiting from the synergistic anionic and cationic redox, the prelithiation separator can intelligently release or intake active lithium via voltage regulation. The staged lithium replenishment strategy was implemented, successfully restoring spent LiFePO4's capacity to 163.7 mAh g-1 and a doubled life. Simultaneously, the separator can absorb excess active lithium up to approximately 600 mAh g-1 below 2.5 V to prevent over-lithiation of the cathode This innovative, straightforward, and cost-effective strategy paves the way for the direct regeneration of spent batteries, expanding the possibilities in the realm of lithium-ion battery recycling.

19.
Funct Integr Genomics ; 24(3): 81, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709433

RESUMEN

One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ganado , Edición Génica/métodos , Animales , Ganado/genética , Resistencia a la Enfermedad/genética
20.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763774

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Asunto(s)
Autofagia , Bleomicina , Animales , Humanos , Masculino , Ratones , Células A549 , Autofagia/efectos de los fármacos , Bleomicina/farmacología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA