Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4428-4435, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046872

RESUMEN

The study investigated the inhibitory effect and mechanism of tectorigenin derivative(SGY) against herpes simplex virus type Ⅰ(HSV-1) by in vitro experiments. The cytotoxicity of SGY and positive drug acyclovir(ACV) on African green monkey kidney(Vero) cells and mouse microglia(BV-2) cells was detected by cell counting kit-8(CCK-8) method, and the maximum non-toxic concentration and median toxic concentration(TC_(50)) of the drugs were calculated. After Vero cells were infected with HSV-1, the virulence was determined by cytopathologic effects(CPE) to calculate viral titers. The inhibitory effect of the tested drugs on HSV-1-induced cytopathy in Vero cells was measured, and their modes of action were initially explored by virus adsorption, replication and inactivation. The effects of the drugs on viral load of BV-2 cells 24 h after HSV-1 infection and the Toll-like receptor(TLR) mRNA expression were detected by real-time fluorescence quantitative PCR(RT-qPCR). The maximum non-toxic concentrations of SGY against Vero and BV-2 cells were 382.804 µg·mL~(-1) and 251.78 µg·mL~(-1), respectively, and TC_(50) was 1 749.98 µg·mL~(-1) and 2 977.50 µg·mL~(-1), respectively. In Vero cell model, the half maximal inhibitory concentration(IC_(50)) of SGY against HSV-1 was 54.49 µg·mL~(-1), and the selection index(SI) was 32.12, with the mode of action of significantly inhibiting replication and directly inactivating HSV-1. RT-qPCR results showed that SGY markedly reduced the viral load in cells. The virus model group had significantly increased relative expression of TLR2, TLR3 and tumor necrosis factor receptor-associated factor 3(TRAF3) and reduced relative expression of TLR9 as compared with normal group, and after SGY intervention, the expression of TLR2, TLR3 and TRAF3 was decreased to different degrees and that of TLR9 was enhanced. The expression of inflammatory factors inducible nitric oxide synthase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1ß(IL-1ß) was remarkably increased in virus model group as compared with that in normal group, and the levels of these inflammatory factors dropped after SGY intervention. In conclusion, SGY significantly inhibited and directly inactivated HSV-1 in vitro. In addition, it modulated the expression of TLR2, TLR3 and TLR9 related pathways, and suppressed the increase of inflammatory factor levels.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Chlorocebus aethiops , Herpes Simple/tratamiento farmacológico , Herpes Simple/patología , Herpesvirus Humano 1/metabolismo , Isoflavonas , Ratones , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Vero , Replicación Viral
2.
J Pharm Biomed Anal ; 218: 114854, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35660874

RESUMEN

Volatile oil, as an important bioactive fraction of medicinal herbs, is comprised of a diversity of compounds. At present, gas chromatography-mass spectrometry (GC-MS) is one of the mainstream approaches to profiling these complex components. However, GC-MS faces the major bottleneck in data analysis, such as co-elution of more than one compound, and interference caused by high background noise; this usually makes an operator have to spend a lot of time and effort in optimizing experimental conditions. Taking Chuanxiong Rhizoma (the dry rhizome of Ligusticum chuanxiong Hort., abbreviated as "CR") as an example, this study is intended to provide a feasible, quick and cost-effective solution for compound identification based on the chemometric method of entropy minimization (EM) algorithm. Ten batches of geo-authentic CR and eight batches of adulterants including Fuxiong (FX), Shanchuanxiong (SCX) and Cnidii Rhizoma (CNR) were determined by headspace GC-MS. FX and SCX were rhizomes of L. chuanxiong but subjected to improper harvest time. CNR was the dried rhizome of Cnidium officinale Makino. The co-eluting and overlapping peaks and low-concentration peaks with high background were precisely reconstructed by EM algorithm, and then the reconstructed pure mass spectra of each component were compared with the ion fragment information in NIST library for qualitative identification. EM algorithm proves to be capable of delivering results with increased accuracy and high confidence. Moreover, by the GC-MS approach established in this work, the volatile chemical profiles of FX, SCX, and CNR, were quite distinct from those of geo-authentic CR, suggesting that the adulterants should not be confused with CR in clinical practice and pharmaceutical industry. In brief, the advanced EM algorithm is envisioned to be applied to a variety of medicinal herbs, enabling rapid and accurate identification of volatile phytochemicals.


Asunto(s)
Medicamentos Herbarios Chinos , Ligusticum , Plantas Medicinales , Medicamentos Herbarios Chinos/análisis , Entropía , Cromatografía de Gases y Espectrometría de Masas , Ligusticum/química , Rizoma/química , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...