Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
ACS Omega ; 9(17): 18854-18861, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38708241

RESUMEN

The use of submerged orifices for bubble generation is ubiquitous in industries with wettability known to influence the bubble departure diameter. In this study, we investigated bubble generation and departure from the orifices (0.3-2 mm) drilled on hydrophobic perfluoroalkoxy (PFA) tubes in water. By varying the gas inflow rate (33 to 200 mL/min), we found that the Sauter mean diameter closely matched those generated by hydrophilic quartz orifices. However, monodispersed bubbles were formed on the PFA tube compared to those on quartz with much wider size distributions. By examining the dynamic bubbling process, we confirmed its agreement with Tate's law, which was originally developed for quasi-steady conditions and emphasizes a balance between capillary and buoyancy forces. However, it should be noted that dynamic conditions lead to an increase in bubble volume compared to the quasi-steady condition despite following the same principle, which is explained by the continuous gas inflow when the bubble departs from the orifice at a necking stage. The above understandings enable generation of monodispersed bubbles under dynamic conditions, benefiting industries requiring precise control on bubble size, such as the bubble assisted wet etching and cleaning processes in semiconductor fabrication.

2.
Dent Mater ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729780

RESUMEN

OBJECTIVE: To investigate the feasibility of optical coherence tomography (OCT)-based digital image correlation (DIC) analysis and to identify the experimental parameters for measurements of polymerization shrinkage. METHODS: Class I cavities were prepared on bovine incisors and filled with Filtek Z350XT Flowable (Z350F). One OCT image of the polymerized restoration was processed to generate virtually displaced images. In addition, the tooth specimen was physically moved under OCT scanning. A DIC software analyzed these virtual and physical transformation sets and assessed the effects of subset sizes on accuracy. The refractive index of unpolymerized and polymerized Z350F was measured via OCT images. Finally, different particles (70-80 µm glass beads, 150-212 µm glass beads, and 75-150 µm zirconia powder) were added to Z350F to inspect the analyzing quality. RESULTS: The analyses revealed a high correlation (>99.99%) for virtual movements within 131 pixels (639 µm) and low errors (<5.21%) within a 10-µm physical movement. A subset size of 51 × 51 pixels demonstrated the convergence of correlation coefficients and calculation time. The refractive index of Z350F did not change significantly after polymerization. Adding glass beads or zirconia particles caused light reflection or shielding in OCT images, whereas blank Z350F produced the best DIC analysis results. SIGNIFICANCE: The OCT-based DIC analysis with the experimental conditions is feasible in measuring polymerization shrinkage of RBC restorations. The subset size in the DIC analysis should be identified to optimize the analysis conditions and results. Uses of hyper- or hypo-reflective particles is not recommended in this method.

3.
Dent Mater ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38777732

RESUMEN

OBJECTIVES: To examine the polymerization shrinkage of different resin-based composite (RBC) restorations using optical coherence tomography (OCT) image-based digital image correlation (DIC) analysis. METHODS: The refractive index (RI) of three RBCs, Filtek Z350XT (Z350), Z350Flowable (Z350F), and BulkFill Posterior (Bulkfill), was measured before and after polymerization to calibrate their axial dimensions under OCT. Class I cavities were prepared in bovine incisors and individually filled with these RBCs under nonbonded and bonded conditions. A series of OCT images of these restorations were captured during 20-s light polymerization and then input into DIC software to analyze their shrinkage behaviors. The interfacial adaptation was also examined using these OCT images. RESULTS: The RI of the three composites ranged from 1.52 to 1.53, and photopolymerization caused neglectable increases in the RI values. For nonbonded restorations, Z350F showed maximal vertical displacements on the top surfaces (-16.75 µm), followed by Bulkfill (-8.81 µm) and Z350 (-5.97 µm). In their bonded conditions, all showed increased displacements. High variations were observed in displacement measurements on the bottom surfaces. In the temporal analysis, the shrinkage of nonbonded Z350F and Bulkfill decelerated after 6-10 s. However, Z350 showed a rebounding upward displacement after 8.2 s. Significant interfacial gaps were found in nonbonded Z350 and Z350F restorations. SIGNIFICANCE: The novel OCT image-based DIC analysis provided a comprehensive examination of the shrinkage behaviors and debonding of the composite restorations throughout the polymerization process. The flowable composite showed the highest shrinkage displacements. Changes in the shrinkage direction may occur in nonbonded conventional composite restorations.

4.
ACS Biomater Sci Eng ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748565

RESUMEN

The silicon nitride (Si3N4) coating exhibits promising potential in oral applications due to its excellent osteogenic and antibacterial properties. However, a comprehensive investigation of Si3N4 coatings in the context of dental implants is still lacking, especially regarding their corrosion resistance and in vivo performance. In this study, Si3N4 coatings were prepared on a titanium surface using the nonequilibrium magnetron sputtering method. A systematic comparison among the titanium group (Ti), Si3N4 coating group (Si3N4-Ti), and sandblasted and acid-etched-treated titanium group (SLA-Ti) has been conducted in vitro and in vivo. The results showed that the Si3N4-Ti group had the best corrosion resistance and antibacterial properties, which were mainly attributed to the dense structure and chemical activity of Si-O and Si-N bonds on the surface. Furthermore, the Si3N4-Ti group exhibited superior cellular responses in vitro and new bone regeneration and osseointegration in vivo, respectively. In this sense, silicon nitride coating shows promising prospects in the field of dental implantology.

5.
Curr Res Food Sci ; 8: 100756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736907

RESUMEN

Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant Streptomyces mobaraensis smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TGL2020 from S. mobaraensis smL2020 and TGase TGLD from S. mobaraensis smLD were compared to obtain the TGase TGLD with perfected characteristics for heterologous expression in a recombinant S. mobaraensis smL2020ΔTG without the gene tgL 2020. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TGLD activity in the recombinant S. mobaraensis smL2020ΔTG: (PL2020-spL2020-protgLD-tgLD)2 (tgL2020and BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TGLD in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.

6.
Gerontology ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740010

RESUMEN

INTRODUCTION: Comprehensive geriatric assessment (CGA) is used to thoroughly assess and identify complex healthcare problems among older adults. However, administration of CGA is time-consuming and labor intensive. A simple screening tool with the mnemonic "FIND-NEEDS" was developed to quickly identify common geriatric conditions. The present study was to evaluate the clinimetric properties of the FIND-NEEDS. METHODS: First-visiting older adults aged 65 years and above (and who were able to communicate by themselves or with the help of a caregiver) were assessed (October to December, 2021) using the FIND-NEEDS and CGA at geriatric outpatient clinics of a tertiary, referred medical center. The FIND-NEEDS was examined for its criterion-related validity and compared with the CGA results. Two types of scoring (summed score and binary score) of FIND-NEEDS and CGA were analyzed using Spearman correlation, sensitivity and specificity, and area under receiver operating characteristic curve (AUC). RESULTS: The mean age of the 114 outpatients was 78.3±7.6 years, and 79(69.3%) were female. The internal consistency was excellent when using all FIND-NEEDS items, and was acceptable when using domain scores. Exploratory factor analysis showed that most of the FIND-NEEDS domain scores had factor loadings higher than 0.3. Intercorrelations of binary scores between domains of FIND-NEEDS and CGA showed most domains were moderately correlated. The overall correlation of summed scores between FIND-NEEDS and CGA was high. The FIND-NEEDS summed score was moderately correlated with CGA score (r=0.494; p<0.001), and the binary score showed excellent correlation (r=0.944; p<0.001). When using the CGA score as the gold standard, the FIND-NEEDS showed excellent AUC (0.950), sensitivity (1.00), and specificity (0.90). DISCUSSION/CONCLUSION: The present study demonstrated that the FIND-NEEDS had acceptable clinimetric properties to screen for geriatric problems among older adults. Further in-depth assessment and care plan can then be conducted afterwards.

7.
PLoS One ; 19(5): e0303619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722875

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0049468.].

8.
Adv Mater ; : e2403455, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723249

RESUMEN

2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.

9.
Brain Res Bull ; : 110969, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705540

RESUMEN

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aß levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aß plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aß plaques and an increase in microglial phagocytosis of Aß plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aß plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.

10.
J Exp Bot ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795330

RESUMEN

Limonium bicolor, known horticulturally as sea lavender, is a typical recretohalophyte with salt glands in its leaf epidermis that secrete excess Na+ out of the plant. Although many genes have been proposed to contribute to salt gland initiation and development, a detailed analysis of alternative splicing, alternative polyadenylation patterns, and long non-coding RNAs (lncRNAs) has been lacking. Here, we applied single-molecule long-read mRNA isoform sequencing (Iso-seq) to explore the complexity of the L. bicolor transcriptome in leaves during salt gland initiation (stage A) and salt gland differentiation (stage B) based on the reference genome. We identified alternative splicing events and the use of alternative poly(A) sites unique to stage A or stage B, leading to the hypothesis that they might contribute to the differentiation of salt glands. Based on the Iso-seq data and RNA in situ hybridization of candidate genes, we selected the lncRNA Btranscript_153392 for gene editing and virus-induced gene silencing to dissect its function. In the absence of this transcript, we observed fewer salt glands on the leaf epidermis, leading to diminished salt secretion and salt tolerance. Our data provide abundant transcriptome resources for unraveling the mechanisms behind salt gland development and furthering crop transformation efforts towards enhanced survivability in saline soils.

11.
Nature ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.

12.
J Hazard Mater ; 473: 134579, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38761761

RESUMEN

Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.

13.
Mitochondrion ; : 101902, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768694

RESUMEN

Traumatic brain injury (TBI) is a global public-health problem. Astrocytes, and their mitochondria, are important factors in the pathogenesis of TBI-induced secondary injury. Mitochondria extracted from healthy tissues and then transplanted have shown promise in models of a variety of diseases. However, the effect on recipient astrocytes is unclear. Here, we isolated primary astrocytes from newborn C57BL/6 mice, one portion of which was used to isolate mitochondria, and another was subjected to stretch injury (SI) followed by transplantation of the isolated mitochondria. After incubation for 12 h, cell viability, mitochondrial dysfunction, calcium overload, redox stress, inflammatory response, and apoptosis were improved. Live-cell imaging showed that the transplanted mitochondria were incorporated into injured astrocytes and fused with their mitochondrial networks, which was in accordance with the changes in the expression levels of markers of mitochondrial dynamics. The astrocytic IKK/NF-κB pathway was decelerated whereas the AMPK/PGC-1α pathway was accelerated by transplantation. Together, these results indicate that exogenous mitochondria from untreated astrocytes can be incorporated into injured astrocytes and fuse with their mitochondrial networks, improving cell viability by ameliorating mitochondrial dysfunction, redox stress, calcium overload, and inflammation.

14.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629869

RESUMEN

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Asunto(s)
Cromatos , Aprendizaje Automático , Humanos , Estudios Transversales , Contaminantes Ambientales , Masculino , Daño del ADN , Adulto , Femenino , Persona de Mediana Edad , Biomarcadores
15.
Environ Pollut ; 349: 123947, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608856

RESUMEN

There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.


Asunto(s)
Senescencia Celular , Cromo , Dinoprost/análogos & derivados , Exposición Profesional , Estrés Oxidativo , Senescencia Celular/efectos de los fármacos , Cromo/toxicidad , Humanos , Estudios Transversales , Adulto , China , Masculino , Exposición Profesional/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Persona de Mediana Edad , Pulmón/efectos de los fármacos , Femenino , 8-Hidroxi-2'-Desoxicoguanosina , Cromatos/toxicidad
16.
Intern Emerg Med ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607541
17.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632579

RESUMEN

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Asunto(s)
Hipertensión , Microbiota , Humanos , Ratas , Animales , Ratas Endogámicas SHR , Enfermedades Neuroinflamatorias , Hipertensión/metabolismo , Presión Sanguínea , Bulbo Raquídeo/metabolismo , Acetatos/farmacología
18.
PLoS One ; 19(4): e0301420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593140

RESUMEN

The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P <0.05, the adjusted R2 = 0.7, indicating that the SIR-multivariate linear regression overseas import risk prediction combination model can obtain better prediction results. Our model effectively estimates the risk of imported cases of COVID-19 from abroad.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , China/epidemiología , Modelos Lineales
19.
Hortic Res ; 11(4): uhae036, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38595909

RESUMEN

Transcription factors with basic helix-loop-helix (bHLH) structures regulate plant growth, epidermal structure development, metabolic processes, and responses to stress extensively. Sea lavender (Limonium bicolor) is a recretohalophyte with unique salt glands in the epidermis that make it highly resistant to salt stress, contributing to the improvement of saline lands. However, the features of the bHLH transcription factor family in L. bicolor are largely unknown. Here, we systematically analyzed the characteristics, localization, and phylogenetic relationships of 187 identified bHLH family genes throughout the L. bicolor genome, as well as their cis-regulatory promoter elements, expression patterns, and key roles in salt gland development or salt tolerance by genetic analysis. Nine verified L. bicolor bHLH genes are expressed and the encoded proteins function in the nucleus, among which the proteins encoded by Lb2G14060 and Lb1G07934 also localize to salt glands. Analysis of CRISPR-Cas9-generated knockout mutants and overexpression lines indicated that the protein encoded by Lb1G07934 is involved in the formation of salt glands, salt secretion, and salt resistance, indicating that bHLH genes strongly influence epidermal structure development and stress responses. The current study lays the foundation for further investigation of the effects and functional mechanisms of bHLH genes in L. bicolor and paves the way for selecting salt-tolerance genes that will enhance salt resistance in crops and for the improvement of saline soils.

20.
Plant Physiol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588029

RESUMEN

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into four broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of scRNA-seq with exogenous application of 6-benzylaminopurine, we delineated five salt gland development-associated sub-clusters and defined salt gland specific differentiation trajectories from sub-clusters 8, 4, or 6 to sub-cluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...