Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Circulation ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695173

RESUMEN

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.

2.
Circulation ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557054

RESUMEN

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated (R) Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism of BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9 (Smad1/5/9), which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.

3.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328113

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

4.
Sci Transl Med ; 16(732): eadc8930, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295182

RESUMEN

A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar , Humanos , Ratones , Animales , Hipertensión Pulmonar/etiología , Histonas , Acetilación , Hernias Diafragmáticas Congénitas/genética , Hernias Diafragmáticas Congénitas/complicaciones , Hernias Diafragmáticas Congénitas/patología , Pulmón/patología
5.
J Viral Hepat ; 31(4): 165-175, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38163911

RESUMEN

Tenofovir alafenamide (TAF), a prodrug of tenofovir, delivers high levels of active drug to hepatocytes and is given in a lower dose than tenofovir disoproxil fumarate (TDF). TAF reduces viral replication in patients with chronic hepatitis B (CHB) similar to TDF and has shown a lower risk of the renal and bone toxicities associated with TDF use. This post-marketing surveillance study examined the safety and effectiveness of TAF in treatment-naïve and -experienced CHB patients who received TAF for 144 weeks at real-world clinical sites in Japan. Safety assessments included the incidence of adverse drug reactions (ADRs), renal and bone events, and changes in selected laboratory parameters. Effectiveness was based on the proportion of patients with HBV DNA levels below the lower limit of quantitation or <29 IU/mL. This analysis included 580 patients; 18.4% of whom were treatment-naïve. The cumulative incidence of ADRs was 0.21 per 100 person-months, and the incidence of serious ADRs was 0.01 (95% CI, 0.00-0.04) per 100 person-months. There were no ADRs of declines in estimated glomerular filtration rates, renal failure or proximal tubulopathy. The most common ADR was hypophosphataemia in seven (1.2%) patients. Two (0.4%) patients each had decreased blood phosphorus, bone mineral density decreased, dizziness and alopecia. Overall, the proportion of virologically suppressed patients increased from 68.8% at baseline to 97.5% at Week 144. These results confirm the real-world safety and effectiveness of TAF in Japanese patients with CHB and are consistent with the findings of other evaluations of the safety and efficacy of TAF in CHB.


Asunto(s)
Hepatitis B Crónica , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Japón , Alanina/efectos adversos , Tenofovir/efectos adversos , Adenina/efectos adversos , Antivirales/efectos adversos
6.
Signal Transduct Target Ther ; 8(1): 276, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452066

RESUMEN

Exposure to the spike protein or receptor-binding domain (S-RBD) of SARS-CoV-2 significantly influences endothelial cells and induces pulmonary vascular endotheliopathy. In this study, angiotensin-converting enzyme 2 humanized inbred (hACE2 Tg) mice and cultured pulmonary vascular endothelial cells were used to investigate how spike protein/S-RBD impacts pulmonary vascular endothelium. Results show that S-RBD leads to acute-to-prolonged induction of the intracellular free calcium concentration ([Ca2+]i) via acute activation of TRPV4, and prolonged upregulation of mechanosensitive channel Piezo1 and store-operated calcium channel (SOCC) key component Orai1 in cultured human pulmonary arterial endothelial cells (PAECs). In mechanism, S-RBD interacts with ACE2 to induce formation of clusters involving Orai1, Piezo1 and TRPC1, facilitate the channel activation of Piezo1 and SOCC, and lead to elevated apoptosis. These effects are blocked by Kobophenol A, which inhibits the binding between S-RBD and ACE2, or intracellular calcium chelator, BAPTA-AM. Blockade of Piezo1 and SOCC by GsMTx4 effectively protects the S-RBD-induced pulmonary microvascular endothelial damage in hACE2 Tg mice via normalizing the elevated [Ca2+]i. Comparing to prototypic strain, Omicron variants (BA.5.2 and XBB) of S-RBD induces significantly less severe cell apoptosis. Transcriptomic analysis indicates that prototypic S-RBD confers more severe acute impacts than Delta or Lambda S-RBD. In summary, this study provides compelling evidence that S-RBD could induce persistent pulmonary vascular endothelial damage by binding to ACE2 and triggering [Ca2+]i through upregulation of Piezo1 and Orai1. Targeted inhibition of ACE2-Piezo1/SOCC-[Ca2+]i axis proves a powerful strategy to treat S-RBD-induced pulmonary vascular diseases.


Asunto(s)
COVID-19 , Células Endoteliales , Animales , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/genética , Calcio , COVID-19/genética , SARS-CoV-2 , Canales de Calcio/genética , Homeostasis/genética , Canales Iónicos
8.
Diab Vasc Dis Res ; 20(3): 14791641231173630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186669

RESUMEN

Sustained hyperglycemia results in excess protein O-GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O-GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O-GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O-GlcNAcase (OGA) overexpression significantly lowered protein O-GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O-GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Ratones , Acetilglucosaminidasa , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Estreptozocina/farmacología
9.
Ann Gastroenterol ; 36(3): 314-320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37144013

RESUMEN

Background: Colonic diverticulosis and colon polyps are common findings on colonoscopy. There is currently no consensus regarding a possible connection between the development of polyps and diverticulosis. Multiple research studies have sought to analyze whether the presence of both conditions is associated with the development of colorectal cancer. Our study aims to add to this body of data and to better assess the relationship between diverticulosis and colon polyps. Methods: A retrospective chart review was performed of all patients who underwent screening and diagnostic colonoscopies between January 2011 and December 2020. Data collection included patient demographics; number, pathology, and location of colon polyps; incidence of colon cancer; and presence and location of colonic diverticulosis. Results: Our study demonstrated that the overall presence of diverticulosis in any location increases the likelihood of having nearby colon polyps, regardless of subtype. The presence of left colonic diverticulosis was particularly associated with adjacent adenomatous and non-adenomatous colon polyps. Conclusions: Colonic diverticulosis in any location may lead to an increased incidence of adenomatous colon polyps. It is important to perform careful examination of the mucosa surrounding colon diverticulosis to avoid missing colon polyps.

10.
Br J Pharmacol ; 180(16): 2102-2119, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36869838

RESUMEN

BACKGROUND AND PURPOSE: The causal relationship between altered host microbiome composition, especially the respiratory tract microbiome, and the occurrence of pulmonary hypertension (PH) has not yet been studied. An increased abundance of airway streptococci is seen in patients with PH compared with healthy individuals. This study aimed to determine the causal link between elevated airway exposure to Streptococcus and PH. EXPERIMENTAL APPROACH: The dose-, time- and bacterium-specific effects of Streptococcus salivarius (S. salivarius), a selective streptococci, on PH pathogenesis were investigated in a rat model established by intratracheal instillation. KEY RESULTS: Exposure to S. salivarius successfully induced typical PH characteristics, such as elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy (Fulton's index) and pulmonary vascular remodelling, in a dose- and time-dependent manner. Moreover, the S. salivarius-induced characteristics were absent in either the inactivated S. salivarius (inactivated bacteria control) treatment group or the Bacillus subtilis (active bacteria control) treatment group. Notably, S. salivarius-induced PH is characterized by elevated inflammatory infiltration in the lungs, in a pattern different from the classic hypoxia-induced PH model. Moreover, in comparison with the SU5416/hypoxia-induced PH model (SuHx-PH), S. salivarius-induced PH causes similar histological changes (pulmonary vascular remodelling) but less severe haemodynamic changes (RVSP, Fulton's index). S. salivarius-induced PH is also associated with altered gut microbiome composition, suggesting potential communication of the lung-gut axis. CONCLUSION AND IMPLICATIONS: This study provides the first evidence that the delivery of S. salivarius in the respiratory tract could cause experimental PH in rats.


Asunto(s)
Hipertensión Pulmonar , Streptococcus salivarius , Ratas , Animales , Remodelación Vascular , Ratas Sprague-Dawley , Pulmón/patología , Hipoxia
11.
Physiol Rev ; 103(3): 1827-1897, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36422993

RESUMEN

The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/patología , Canales Iónicos , Pulmón , Vasoconstricción/fisiología , Señalización del Calcio/fisiología , Miocitos del Músculo Liso
12.
Chest ; 163(1): 204-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087794

RESUMEN

BACKGROUND: The prognosis and therapeutic responses are worse for pulmonary arterial hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pulmonary arterial hypertension (IPAH). This discrepancy could be driven by divergence in underlying metabolic determinants of disease. RESEARCH QUESTION: Are circulating bioactive metabolites differentially altered in SSc-PAH vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups? STUDY DESIGN AND METHODS: Plasma biosamples from 400 patients with SSc-PAH and 1,082 patients with IPAH were included in the study. Another cohort of 100 patients with scleroderma with no PH and 44 patients with scleroderma with PH was included for external validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and immune-inflammatory pathways, were assayed in plasma samples from independent discovery and validation cohorts using liquid chromatography/high-resolution mass spectrometry-based approaches. Regression analyses were used to identify metabolites that exhibited differential levels between SSc-PAH and IPAH and associated with disease severity. RESULTS: From hundreds of circulating bioactive lipid molecules, five metabolites were found to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and sex hormone metabolites. INTERPRETATION: Patients with SSc-PAH are characterized by an unfavorable bioactive metabolic profile that may explain the poor and limited response to therapy. These data provide important metabolic insights into the molecular heterogeneity underlying differences between subgroups of PAH.


Asunto(s)
Hipertensión Pulmonar , Esclerodermia Sistémica , Humanos , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Pronóstico , Lípidos/uso terapéutico
13.
Hypertension ; 80(1): 70-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345832

RESUMEN

BACKGROUND: Autophagy plays an important role in the pathogenesis of pulmonary hypertension (PH). ROC-325 is a novel small molecule lysosomal autophagy inhibitor that has more potent anticancer activity than the antimalarial drug hydroxychloroquine, the latter has been prevalently used to inhibit autophagy. Here, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in experimental PH models. METHODS AND RESULTS: Hemodynamics, echocardiography, and histology measurement showed that ROC-325 treatment prevented the development of PH, right ventricular hypertrophy, fibrosis, dysfunction, and vascular remodeling after monocrotaline and Sugen5416/hypoxia administration. ROC-325 attenuated high K+ or alveolar hypoxia-induced pulmonary vasoconstriction and enhanced endothelial-dependent relaxation in isolated pulmonary artery rings. ROC-325 treatment inhibited autophagy and enhanced endothelial nitric oxide synthase activity in lung tissues of monocrotaline-PH rats. In cultured human and rat pulmonary arterial smooth muscle cell and pulmonary arterial endothelial cell under hypoxia exposure, ROC-325 increased LC3B (light chain 3 beta) and p62 accumulation, endothelial cell nitric oxide production via phosphorylation of endothelial nitric oxide synthase (Ser1177) and dephosphorylation of endothelial nitric oxide synthase (Thr495) as well as decreased HIF (hypoxia-inducible factor)-1α and HIF-2α stabilization. CONCLUSIONS: These data indicate that ROC-325 is a promising novel agent for the treatment of PH that inhibits autophagy, downregulates HIF levels, and increases nitric oxide production.


Asunto(s)
Hipertensión Pulmonar , Humanos , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Lisosomas , Autofagia , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico
15.
16.
Microbiol Res ; 265: 127205, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36202007

RESUMEN

Previous studies have suggested that dysbiosis of the gut microbiota is associated with the development of pulmonary hypertension (PH). In this study, we established a left pulmonary artery ligation (LPAL)-induced PH rat model due to high flow and hemodynamic stress and investigated the association between gut microbiota composition and host metabolome signatures (in both gut and lung tissues) by using multiomics and correlation analysis. The results showed that LPAL successfully induced PH, characterized by increased right ventricular systolic pressure, right ventricular hypertrophy and pulmonary vascular remodelling. Moreover, gut pathological abnormalities were observed in association with dramatic alterations in the gut microbiome and metabolome as well as the lung metabolome. The increased bacterial genus Sporobacter and decreased genera Eubacterium, Eubacteriaceae, Deltaproteobacteria and Desulfovibrio featured the altered gut microbiome in LPAL-PH versus SHAM rats. Moreover, imbalanced abundance of protective metabolites (e.g., butyrate, propionate) and pathogenic metabolites (e.g., proinflammatory mediators) were seen in the gut metabolome of LPAL-PH versus SHAM rats. In addition, the altered gut microbiome strongly correlated with the altered metabolome patterns in both the gut and lung of LPAL-PH rats. In conclusion, this study revealed significant gut dysbiosis in LPAL-PH rats, characterized by altered gut microbiota composition, in association with specific changes in gut and lung metabolome profiles. These findings enriched our understanding of the unique signature of the gut microbiome and the close association of the "gut-lung axis" in LPAL-PH induced by long-term high flow, leading to novel therapeutic, diagnostic or management paradigms for this subtype of PH.


Asunto(s)
Hipertensión Pulmonar , Microbiota , Animales , Ratas , Butiratos , Disbiosis/microbiología , Pulmón/metabolismo , Metaboloma , Propionatos
17.
Circ Res ; 131(10): 828-841, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36252121

RESUMEN

BACKGROUND: Dysregulated BMP (bone morphogenetic protein) or TGF-ß (transforming growth factor beta) signaling pathways are imperative in idiopathic and familial pulmonary arterial hypertension (PAH) as well as experimental pulmonary hypertension (PH) in rodent models. MED1 (mediator complex subunit 1) is a key transcriptional co-activator and KLF4 (Krüppel-like factor 4) is a master transcription factor in endothelium. However, MED1 and KLF4 epigenetic and transcriptional regulations of the BMP/TGF-ß axes in pulmonary endothelium and their dysregulations leading to PAH remain elusive. We investigate the MED1/KLF4 co-regulation of the BMP/TGF-ß axes in endothelium by studying the epigenetic regulation of BMPR2 (BMP receptor type II), ETS-related gene (ERG), and TGFBR2 (TGF-ß receptor 2) and their involvement in the PH. METHODS: High-throughput screening involving data from RNA-seq, MED1 ChIP-seq, H3K27ac ChIP-seq, ATAC-seq, and high-throughput chromosome conformation capture together with in silico computations were used to explore the epigenetic and transcriptional regulation of BMPR2, ERG, and TGFBR2 by MED1 and KLF4. In vitro experiments with cultured pulmonary arterial endothelial cells (ECs) and bulk assays were used to validate results from these in silico analyses. Lung tissue from patients with idiopathic PAH, animals with experimental PH, and mice with endothelial ablation of MED1 (EC-MED1-/-) were used to study the PH-protective effect of MED1. RESULTS: Levels of MED1 were decreased in lung tissue or pulmonary arterial endothelial cells from idiopathic PAH patients and rodent PH models. Mechanistically, MED1 acted synergistically with KLF4 to transactivate BMPR2, ERG, and TGFBR2 via chromatin remodeling and enhancer-promoter interactions. EC-MED1-/- mice showed PH susceptibility. In contrast, MED1 overexpression mitigated the PH phenotype in rodents. CONCLUSIONS: A homeostatic regulation of BMPR2, ERG, and TGFBR2 in ECs by MED1 synergistic with KLF4 is essential for the normal function of the pulmonary endothelium. Dysregulation of MED1 and the resulting impairment of the BMP/TGF-ß signaling is implicated in the disease progression of PAH in humans and PH in rodent models.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Células Endoteliales/metabolismo , Epigénesis Genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Arteria Pulmonar/metabolismo , Proteínas Morfogenéticas Óseas/genética , Hipertensión Arterial Pulmonar/genética , Endotelio Vascular/metabolismo , Factores de Transcripción/metabolismo , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo
18.
Thromb Res ; 218: 52-63, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988445

RESUMEN

INTRODUCTION: Piezo1 is an important mechanosensitive channel implicated in vascular remodeling. However, the role of Piezo1 in different types of vascular cells during the development of pulmonary hypertension (PH) induced by high shear stress is largely unknown. MATERIALS AND METHODS: We used a rat PH model established by left pulmonary artery ligation (LPAL, for 2-5 weeks), which mimics the high flow and hemodynamic stress, to study Piezo1 contribution to pulmonary vascular remodeling. RESULTS: Right ventricular systolic pressure (RVSP), a surrogate measure for pulmonary arterial systolic pressure, and right ventricular wall thickness, a measure for right ventricular hypertrophy, were significantly increased in LPAL rats compared with Sham-control (SHAM) rats. Rats in LPAL-5w groups developed remarkable pulmonary vascular remodeling, while phenylephrine-induced contraction and acetylcholine-induced relaxation were both significantly inhibited in these rats. Upregulation of Piezo1, in association with increase in cytosolic Ca2+ concentration ([Ca2+]cyt), was observed in pulmonary arterial smooth muscle cells (PASMCs) from LPAL-2w and LPAL-5w rats in comparison to the SHAM controls. Piezo1 upregulation in PASMCs from LPAL rats was directly related to Yes-associated protein (YAP)/ TEA domain transcription factor 4 (TEAD4). Piezo1 expression was also upregulated in the whole-lung tissue of LPAL rats. The endothelial upregulation of Piezo1 was related to transcriptional regulation by RELA (p65) and lung inflammation. CONCLUSION: The upregulation of Piezo1 in both PASMCs and ECs coordinates with each other via different cell signaling pathways to cause pulmonary vascular remodeling in LPAL-PH rats, providing novel insights into the cell-type specific pathogenic roles of Piezo1 in shear stress-associated experimental PH.


Asunto(s)
Hipertensión Pulmonar , Proteínas de la Membrana , Animales , Ratas , Acetilcolina/metabolismo , Proliferación Celular , Hipertensión Pulmonar/etiología , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Fenilefrina/metabolismo , Arteria Pulmonar/patología , Factor de Transcripción 4/metabolismo , Regulación hacia Arriba , Remodelación Vascular , Proteínas Señalizadoras YAP
19.
J Am Coll Cardiol ; 80(7): 697-718, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35953136

RESUMEN

BACKGROUND: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. OBJECTIVES: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. METHODS: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. RESULTS: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. CONCLUSIONS: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification. (Pulmonary Vascular Disease Phenomics Program PVDOMICS [PVDOMICS]; NCT02980887).


Asunto(s)
Hipertensión Pulmonar , Enfermedades Vasculares , Monóxido de Carbono , Estudios Transversales , Humanos , Hipertensión Pulmonar/etiología , Circulación Pulmonar , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/cirugía
20.
Front Physiol ; 13: 885295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035495

RESUMEN

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...