Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(22): 4153-4163, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36098964

RESUMEN

Menin is necessary for the formation of the menin/mixed lineage leukemia (MLL) complex and is recruited directly to chromatin. Menin is an important tumor suppressor in several cancer types, including lung cancer. Here, we investigated the role of MLL in menin-regulated lung tumorigenesis. Ablation of MLL suppressed KrasG12D-induced lung tumorigenesis in a genetically engineered mouse model. MLL deficiency decreased histone H3 lysine 4 trimethylation (H3K4me3) and subsequently suppressed expression of the Ras protein-specific guanine nucleotide-releasing factor 1 (Rasgrf1) gene. Rasgrf1 was essential for the GTP-bound active state of Kras and the activation of Kras downstream pathways as well as their cancer-promoting activities. MI-3, a small-molecule inhibitor targeting MLL, specifically inhibited the growth of Kras-mutated lung cancer cells in vitro and in vivo with minimal effect on wild-type Kras lung cancer growth. Together, these results demonstrate a novel tumor promoter function of MLL in mutant Kras-induced lung tumorigenesis and further indicate that specific blockade of the MLL-Rasgrf1 pathway may be a potential therapeutic strategy for the treatment of tumors containing Kras mutations. SIGNIFICANCE: Activation of mutant Kras is dependent on MLL-mediated epigenetic regulation of Rasgrf1, conferring sensitivity to small-molecule inhibition of MLL in Kras-driven lung cancer.


Asunto(s)
Epigénesis Genética , Neoplasias Pulmonares , Proteína de la Leucemia Mieloide-Linfoide , ras-GRF1 , Animales , Ratones , Transformación Celular Neoplásica/metabolismo , Epigénesis Genética/genética , Epigénesis Genética/fisiología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia/genética , Leucemia/patología , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , ras-GRF1/genética , ras-GRF1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Mutación
2.
Nat Commun ; 11(1): 1009, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081882

RESUMEN

The MEN1 gene, a tumor suppressor gene that encodes the protein menin, is mutated at high frequencies in neuroendocrine (NE) tumors; however, the biological importance of this gene in NE-type lung cancer in vivo remains unclear. Here, we established an ATII-specific KrasG12D/+/Men1-/- driven genetically engineered mouse model and show that deficiency of menin results in the accumulation of DNA damage and antagonizes oncogenic Kras-induced senescence and the epithelial-to-mesenchymal transition during lung tumorigenesis. The loss of menin expression in certain human primary lung cancers correlates with elevated NE profiles and reduced overall survival.


Asunto(s)
Daño del ADN/genética , Neoplasias Pulmonares/genética , Tumores Neuroendocrinos/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Noqueados , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA