Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(16): 15763-15775, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37556610

RESUMEN

Highly porous sensitive materials with well-defined structures and morphologies are extremely desirable for developing high-performance chemiresistive gas sensors. Herein, inspired by the classical alkaloid precipitant reaction, a robust and reliable active mesoporous nitrogen polymer sphere-directed synthesis method was demonstrated for the controllable construction of heteroatom-doped mesoporous tungsten oxide spheres. In the typical synthesis, P-doped mesoporous WO3 monodisperse spheres with radially oriented channels (P-mWO3-R) were obtained with a diameter of ∼180 nm, high specific surface area, and crystalline skeleton. The in situ-introduced P atoms could effectively adjust the coordination environment of W atoms (Wδ+-Ov), giving rise to dramatically enhanced active surface-adsorbed oxygen species and unusual metastable ε-WO3 crystallites. The P-mWO3-R spheres were applied for the sensing of 3-hydroxy-2-butanone (3H2B), a biomarker of foodborne pathogenic bacteria Listeria monocytogenes (LM). The sensor exhibited high sensitivity (Ra/Rg = 29 to 3 ppm), fast response dynamics (26/7 s), outstanding selectivity, and good long-term stability. Furthermore, the device was integrated into a wireless sensing module to realize remote real-time and precise detection of LM in practical applications, making it possible to evaluate food quality using gas sensors conveniently.


Asunto(s)
Alcaloides , Listeria monocytogenes , Óxidos/química , Tungsteno/química , Biomarcadores , Nitrógeno
2.
Artículo en Inglés | MEDLINE | ID: mdl-36901399

RESUMEN

The emission of harmful gases has seriously exceeded relative standards with the rapid development of modern industry, which has shown various negative impacts on human health and the natural environment. Recently, metal-organic frameworks (MOFs)-based materials have been widely used as chemiresistive gas sensing materials for the sensitive detection and monitoring of harmful gases such as NOx, H2S, and many volatile organic compounds (VOCs). In particular, the derivatives of MOFs, which are usually semiconducting metal oxides and oxide-carbon composites, hold great potential to prompt the surface reactions with analytes and thus output amplified resistance changing signals of the chemiresistors, due to their high specific surface areas, versatile structural tunability, diversified surface architectures, as well as their superior selectivity. In this review, we introduce the recent progress in applying sophisticated MOFs-derived materials for chemiresistive gas sensors, with specific emphasis placed on the synthesis and structural regulation of the MOF derivatives, and the promoted surface reaction mechanisms between MOF derivatives and gas analytes. Furthermore, the practical application of MOF derivatives for chemiresistive sensing of NO2, H2S, and typical VOCs (e.g., acetone and ethanol) has been discussed in detail.


Asunto(s)
Estructuras Metalorgánicas , Compuestos Orgánicos Volátiles , Humanos , Acetona , Ambiente , Etanol , Gases , Óxidos
3.
Small ; 18(50): e2204828, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310138

RESUMEN

Highly selective and sensitive H2 S sensors are in high demand in various fields closely related to human life. However, metal oxide semiconductors (MOSs) suffer from poor selectivity and single MOS@metal organic framework (MOF) core-shell nanocomposites are greatly limited due to the intrinsic low sensitivity of MOF shells. To simultaneously improve both selectivity and sensitivity, heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell nanowires (NWs) are meticulously synthesized with the assistance of atomic layer deposition. The ZIF-8 shell with regular pores and special surface functional groups is attractive for excellent selectivity and the heterostructured α-Fe2 O3 @ZnO core with an additional electron depletion layer is promising with enhanced sensitivity compared to a single MOS core. As a result, the heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell NWs achieve remarkable H2 S sensing performance with a high response (Rair /Rgas  = 32.2 to 10 ppm H2 S), superior selectivity, fast response/recovery speed (18.0/31.8 s), excellent long-term stability (at least over 3 months), and relatively low limit of detection (down to 200 ppb) at low operating temperature of 200 °C, far beyond α-Fe2 O3 @ZIF-8 or α-Fe2 O3 @ZnO core-shell NWs. Furthermore, a micro-electromechanical system-based H2 S gas sensor system with low power consumption is developed, holding great application potential in smart cities.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36091582

RESUMEN

Background: Hallux valgus is a relatively common forefoot disease in clinical practice. The aim of our study was to assess the role of local cocktail drugs and postoperative pain after hallux valgus surgery. Methods: A retrospective case-control study was conducted to analyze 75 moderate to severe hallux valgus patients from June 1, 2018 to December 1, 2019. All patients were divided into cocktail and control groups according to whether the cocktail therapy was used or not after the operation. The anesthesiologist did not provide analgesic treatment other than nerve block anesthesia and intravenous anesthesia, such as analgesic pumps. The operative region of the cocktail group received a mixture of 10 ml of 0.75% ropivacaine, 10 ml of flurbiprofen axetil injection, and 1 ml of compound betamethasone injection, whereas the control group received nothing in the surgical spot. We recorded patients' VAS scores preoperatively and at 6, 24 hours postoperatively; the length of hospital stay and the number of hospitalization expenses; the scores of Kolcaba comfort level; and the scores of Pittsburgh sleep quality. Result: There was no significant difference in age or sex between the two groups. The VAS scores at 6 and 24 hours postoperatively were significantly lower in the cocktail group. The average length of hospital stay was 8.24 days in the control group and 3.73 days in the cocktail group. The average total hospitalization cost of the control group was ¥28285.16, and that of the cocktail group was ¥22366.31. In expenses of total hospitalization costs, the cocktail group was lower than the control group. Kolcaba's comfort various scores and the total score of the cocktail group were higher than the control group. The total score of PSQI and all dimensions in the experimental group were lower than those in the control group. Conclusion: We found a significant difference in the results of postoperative pain management except for age, sex, and hospitalization expenses. After hallux valgus surgery, inject cocktail drugs around the first metatarsophalangeal joint did reduce postoperative pain level. Level of Evidence. Level III, case-control study.

5.
ACS Cent Sci ; 8(8): 1196-1208, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36032768

RESUMEN

Dynamic coassembly of block copolymers (BCPs) with Keggin-type polyoxometalates (POMs) is developed to synthesize heteroatom-doped tungsten oxide with controllable nanostructures, including hollow hemispheres, nanoparticles, and nanowires. The versatile coassembly in dual n-hexane/THF solvent solution enables the fomation of poly(ethylene oxide)-b-polystyrene (PEO-b-PS)/POMs (e.g., silicotungstic acid, H4SiW12O40) nanocomposites with different morphologies such as spherical vesicles, inverse spherical micelles, and inverse cylindrical micelles, which can be readily converted into diverse nanostructured metal oxides with high surface area and unique properties via in situ thermal-induced structural evolution. For example, uniform silicon-doped WO3 (Si-WO3) hollow hemispheres derived from coassembly of PEO-b-PS with H4SiW12O40 were utilized to fabricate gas sensing devices which exhibit superior gas sensing performance toward acetone, thanks to the selective gas-solid interface catalytic reaction that induces resistance changes of the devices due to the high specific surface areas, abundant oxygen vacancies, and the Si-doping induced metastable ε-phase of WO3. Furthermore, density functional theory (DFT) calculation reveals the mechanism about the high sensitivity and selectivity of the gas sensors. On the basis of the as-fabricated devices, an integrated gas sensor module was constructed, which is capable of real-time monitoring the environmental acetone concentration and displaying relevant sensing results on a smart phone via Bluetooth communication.

6.
J Colloid Interface Sci ; 622: 156-168, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35490619

RESUMEN

Highly sensitive and stable acetone gas sensors based on MEMS substrate supported carbon nanoparticles decorated mesoporous α-Fe2O3 (C-d-mFe2O3) nanorods (NRs) derived from Fe-MIL-88B-NH2 NRs were first synthesized via a sequential process including a facile hydrothermal reaction and one-step pyrolysis at a moderate temperature in air. The MEMS architecture ensures low power consumption, small size, and high integration of the sensor. The obtained C-d-mFe2O3 NRs exhibit good thermal stability and superior acetone sensing performance with excellent response (Ra/Rg = 5.2 to 2.5 ppm) and selectivity, fast response/recovery speed (10/27 s), and low detection limit of 500 ppb at 225 °C. Furthermore, the acetone sensor exhibits remarkable long-term stability and repeatability even after being stored in air for over 10 months. The enhanced acetone sensing performance could be attributed to the large specific surface area of mesoporous α-Fe2O3 NRs, highly conductive carbon nanoparticles on the surface, and the formation of α-Fe2O3/C heterojunction. Density functional theory (DFT) calculations help to further confirm the superior acetone sensing performance. The competitive performance makes C-d-mFe2O3 NRs gas sensor a great potential for practical application in environmental harmful acetone gas monitoring.


Asunto(s)
Sistemas Microelectromecánicos , Nanotubos , Acetona , Carbono , Temperatura
7.
Environ Sci Technol ; 55(13): 8613-8621, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165282

RESUMEN

The addition of Fe2O3 into furnaces is a promising method for arsenic pollution control. Nevertheless, Fe2O3 particles undergo serious sintering under actual furnace temperatures. To improve its sintering resistance, Fe2O3 hollow microspheres were synthesized by the template method and were tested in flue gas containing SO2 and NO in the range of 1000-1300 °C. The results demonstrated that the amount of arsenic captured could be steadily maintained above 5 mg/g throughout the operating temperature range, and Fe2O3 microspheres could maintain the originally developed pore structure and hollow morphology well even at 1200 °C. Based on product analysis and density functional theory calculations, the fixation pathway of arsenic was proposed. In no oxygen conditions, As2O3 was first bound to the Fe2O3 surface by forming an -O-As-O-Fe stable structure and then was oxidized by lattice oxygen. The introduction of O2 could regenerate the consumed lattice oxygen and therefore promote arsenic capture. Finally, the oxidized arsenic was fixed in products in the form of FeAsO4. Additionally, the impact of acid gases was also investigated. SO2 showed a notable inhibiting effect on arsenic capture, while the impact of NO was less noticeable.


Asunto(s)
Arsénico , Ácidos , Gases , Microesferas , Oxidación-Reducción
8.
Nanoscale ; 12(13): 7159-7173, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32193525

RESUMEN

As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm-2 (at 1.23 V vs. RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances the absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after the deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrate a good strategy for the fabrication of core-shell structures that enhance the photoelectrochemical performance of readily available photoanodes.

9.
ACS Appl Mater Interfaces ; 12(12): 14095-14104, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32096620

RESUMEN

Preparation of reliable, stable, and highly responsive gas-sensing devices for the detection of acetone has been considered to be a key issue for the development of accurate disease diagnosis systems via exhaled breath. In this paper, novel CeO2 nanodot-decorated WO3 nanowires are successfully synthesized through a sequential hydrothermal and thermolysis process. Such CeO2 nanodot-decorated WO3 nanowires exhibited a remarkable enhancement in acetone-sensing performance based on a miniaturized micro-electromechanical system device, which affords high response (S = 1.30-500 ppb, 1.62-2.5 ppm), low detection limit (500 ppb), and superior selectivity toward acetone. The improved performance of the acetone sensor is likely to be originated from the fast carrier transportation of WO3 nanowires, the formation of WO3-CeO2 heterojunctions, and the existence of large amounts of oxygen vacancies in CeO2. The improved reaction thermodynamics and sensing mechanisms have also been revealed by the specific band alignment and X-ray photoelectron spectroscopy analysis.

10.
J Colloid Interface Sci ; 568: 81-88, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088454

RESUMEN

Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 °C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment.

11.
Microsyst Nanoeng ; 6: 30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567644

RESUMEN

Highly sensitive and selective hydrogen sulfide (H2S) sensors based on hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires (NWs) were synthesized via a sequential process combining hard template processing, atomic-layer deposition, and hydrothermal processing. The hierarchical sensing materials were prepared in situ on microelectromechanical systems, which are expected to achieve high-performance gas sensors with superior sensitivity, long-term stability and repeatability, as well as low power consumption. Specifically, the hierarchical nanobowl SnO2@ZnO NW sensor displayed a high sensitivity of 6.24, a fast response and recovery speed (i.e., 14 s and 39 s, respectively), and an excellent selectivity when detecting 1 ppm H2S at 250 °C, whose rate of resistance change (i.e., 5.24) is 2.6 times higher than that of the pristine SnO2 nanobowl sensor. The improved sensing performance could be attributed to the increased specific surface area, the formation of heterojunctions and homojunctions, as well as the additional reaction between ZnO and H2S, which were confirmed by electrochemical characterization and band alignment analysis. Moreover, the well-structured hierarchical sensors maintained stable performance after a month, suggesting excellent stability and repeatability. In summary, such well-designed hierarchical highly ordered nanobowl SnO2@ZnO NW gas sensors demonstrate favorable potential for enhanced sensitive and selective H2S detection with long-term stability and repeatability.

12.
Talanta ; 175: 427-434, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28842012

RESUMEN

In this work, a TiO2 film was prepared on a MALDI plate by atomic layer deposition (ALD) technique and then modified with -NH2. The obtained TiO2-NH2 modified plate was applied for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. The ALD TiO2 film displayed quite uniform morphology, and attached firmly to the MALDI plate with rather stable physical and chemical properties, which resulted in fine stability of the plate in performance. The -NH2 groups offered the film better hydrophilicity and affinity toward glycopeptides. The on-plate simultaneous enrichment performance of the TiO2-NH2 modified plate was investigated by ß-casein digests, HRP digests and human serum.


Asunto(s)
Glicopéptidos/análisis , Fosfopéptidos/análisis , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Titanio/química , Secuencia de Aminoácidos , Animales , Caseínas/química , Bovinos , Diseño de Equipo , Glicopéptidos/aislamiento & purificación , Peroxidasa de Rábano Silvestre/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fosfopéptidos/aislamiento & purificación , Saliva/química , Albúmina Sérica Bovina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
13.
ACS Appl Mater Interfaces ; 9(23): 19507-19512, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28560876

RESUMEN

Photoelectrochemical (PEC) water splitting is a promising approach for renewable energy, where the development of efficient photoelectrodes, especially photoanodes for water oxidation is still challenging. In this paper, we report the novel solution-processed microcrystalline Ag3PO4 photoanodes with tunable porosity depending on the reaction time. These porous Ag3PO4 films were grown on large-area (4.5 × 4.5 cm2) silver substrates via an air-exposed and room-temperature immersion reaction. Enhanced light absorption abilities were exhibited by the synthesized Ag3PO4 films with optimized porosity resulted from prolonged reaction times (≥20 h), due to which appreciable water splitting performance was demonstrated when they were utilized as photoanodes. Particularly, the highly porous 20 h Ag3PO4 photoanode presented a photocurrent density of around 4.32 mA/cm2, which is nearly three times higher than that of the nonporous 1 h Ag3PO4 photoanode (1.48 mA/cm2) at 1 V vs Ag/AgCl. Moreover, superior stability of the 20 h Ag3PO4 photoanode has also been confirmed by the 5 h successive PEC water splitting experiment. Therefore, both the scalable and facile fabrication method, and considerable photoactivity and stability of these Ag3PO4 photoanodes together suggest their great potential for efficient solar-to-fuel energy conversion and other PEC applications.

14.
J Colloid Interface Sci ; 490: 23-28, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27870955

RESUMEN

Structurally well-defined assemblies of silver nanoparticles, including the dendritic nano-flowers (NFs), planar nano-spheres (NSs) and nano-dendrites (NDs) were obtained by a surfactant-free and ultrafast (≈15min) self-assembly process on as-purchased carbon-coated copper TEM grids. The silver nano-assemblies, especially the NFs modified TEM grids, when serving as surface-enhanced Raman spectroscopy (SERS) substrates for detecting melamine molecules, demonstrated a long-lived limit of detection (LOD) of as low as 10-11M, suggesting the potential of these silver-assemblies modified carbon-coated copper grids as novel potable and cost-effective SERS substrates for trace detection toward various food contaminants like melamine.


Asunto(s)
Carbono/química , Cobre/química , Contaminación de Alimentos/análisis , Nanoestructuras/química , Plata/química , Espectrometría Raman/métodos , Triazinas/análisis , Animales , Límite de Detección , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Leche/química , Nanoestructuras/ultraestructura
15.
Adv Mater ; 28(3): 486-90, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26588359

RESUMEN

The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).


Asunto(s)
Absorción de Radiación , Cobalto/química , Microesferas , Microondas , Níquel/química , Dióxido de Silicio/química , Titanio/química , Aire , Microtecnología , Solventes/química , Temperatura
16.
ACS Appl Mater Interfaces ; 7(33): 18491-500, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26263301

RESUMEN

We present a novel porous Au-Ag alloy particles inlaid AgCl membrane as plasmonic catalytic interfaces with real-time, in situ surface-enhanced Raman spectroscopy (SERS) monitoring. The Au-Ag alloy particles inlaid AgCl membranes were obtained via a facile two-step, air-exposed, and room-temperature immersion reaction with appropriate annealing process. Owing to the designed integration of semiconductor component AgCl and noble metal Au-Ag particles, both the catalytic reduction and visible-light-driven photocatalytic activities toward organic contaminants were attained. Specifically, the efficiencies of about 94% of 4-nitrophenol (4-NP, 5 × 10(-5) M) reduction after 8 min of reaction, and degradation of rhodamine 6G (R6G, 10(-5) M) after 12 min of visible light irradiation were demonstrated. Moreover, efficiencies of above 85% of conversion of 4-NP to 4-aminophenol (4-AP) and 90% of R6G degradation were achieved as well after 6 cycles of reactions, by which robust recyclability was confirmed. Further, with distinct SERS signals generated simultaneously from the surfaces of Au-Ag particles under laser excitation, in situ SERS monitoring of the process of catalytic reactions with superior sensitivity and linearity has been realized. Overall, the capability of the Au-Ag particles inlaid AgCl membranes to provide SERS monitored catalytic and visible-light-driven photocatalytic conversion of organic pollutants, along with their mild and cost-effective fabrication method, would make sense for in-depth understanding of the mechanisms of (photo)catalytic reactions, and also future development of potable, multifunctional and integrated catalytic and sensing devices.

17.
ACS Appl Mater Interfaces ; 7(9): 5312-9, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25647306

RESUMEN

A confined interface coassembly coating strategy based on three-dimensional (3-D) ordered macroporous silica as the nanoreactor was demonstrated for the designed fabrication of novel 3-D ordered arrays of core-shell microspheres consisting of Fe3O4 cores and ordered mesoporous carbon shells. The obtained 3-D ordered arrays of Fe3O4@mesoporous carbon materials possess two sets of periodic structures at both mesoscale and submicrometer scale, high surface area of 326 m(2)/g, and large mesopore size of 19 nm. Microwave absorption test reveals that the obtained materials have excellent microwave absorption performances with maximum reflection loss of up to -57 dB at 8 GHz, and large absorption bandwidth (7.3-13.7 GHz, < -10 dB), due to the combination of the large magnetic loss from iron oxides, the strong dielectric loss from carbonaceous shell, and the strong reflection and scattering of electromagnetic waves of the ordered structures of the mesopores and 3-D arrays of core-shell microspheres.

18.
ACS Cent Sci ; 1(7): 400-8, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27162998

RESUMEN

Oriented self-assembly between inorganic nanocrystals and surfactants is emerging as a route for obtaining new mesocrystalline semiconductors. However, the actual synthesis of mesoporous semiconductor mesocrystals with abundant surface sites is extremely difficult, and the corresponding new physical and chemical properties arising from such an intrinsic porous mesocrystalline nature, which is of fundamental importance for designing high-efficiency nanostructured devices, have been rarely explored and poorly understood. Herein, we report a simple evaporation-driven oriented assembly method to grow unprecedented olive-shaped mesoporous TiO2 mesocrystals (FDU-19) self-organized by ultrathin flake-like anatase nanocrystals (∼8 nm in thickness). The mesoporous mesocrystals FDU-19 exhibit an ultrahigh surface area (∼189 m(2)/g), large internal pore volume (0.56 cm(3)/g), and abundant defects (oxygen vacancies or unsaturated Ti(3+) sites), inducing remarkable crystallite-interface reactivity. It is found that the mesocrystals FDU-19 can be easily fused in situ into mesoporous anatase single crystals (SC-FDU-19) by annealing in air. More significantly, by annealing in a vacuum (∼4.0 × 10(-5) Pa), the mesocrystals experience an abrupt three-dimensional to two-dimensional structural transformation to form ultrathin anatase single-crystal nanosheets (NS-FDU-19, ∼8 nm in thickness) dominated by nearly 90% exposed reactive (001) facets. The balance between attraction and electrostatic repulsion is proposed to determine the resulting geometry and dimensionality. Dye-sensitized solar cells based on FDU-19 and SC-FDU-19 samples show ultrahigh photoconversion efficiencies of up to 11.6% and 11.3%, respectively, which are largely attributed to their intrinsic single-crystal nature as well as high porosity. This work gives new understanding of physical and chemical properties of mesoporous semiconductor mesocrystals and opens up a new pathway for designing various single-crystal semiconductors with desired mesostructures for applications in catalysis, sensors, drug delivery, optical devices, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...