Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 34(10): 3915-3935, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35866997

RESUMEN

PICKLE (PKL) is a chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler that plays essential roles in controlling the gene expression patterns that determine developmental identity in plants, but the molecular mechanisms through which PKL is recruited to its target genes remain elusive. Here, we define a cis-motif and trans-acting factors mechanism that governs the genomic occupancy profile of PKL in Arabidopsis thaliana. We show that two homologous trans-factors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 physically interact with PKL in vivo, localize extensively to PKL-occupied regions in the genome, and promote efficient PKL recruitment at thousands of target genes, including those involved in seed maturation. Transcriptome analysis and genetic interaction studies reveal a close cooperation of VAL1/VAL2 and PKL in regulating gene expression and developmental fate. We demonstrate that this recruitment operates at two master regulatory genes, ABSCISIC ACID INSENSITIVE3 and AGAMOUS-LIKE 15, to repress the seed maturation program and ensure the seed-to-seedling transition. Together, our work unveils a general rule through which the CHD3 chromatin remodeler PKL binds to its target chromatin in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Semillas/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Plant ; 14(6): 888-904, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33771698

RESUMEN

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machines that play vital roles in the regulation of chromatin structure and gene expression. However, the mechanisms by which SWI/SNF complexes recognize their target loci in plants are not fully understood. Here, we show that the Arabidopsis thaliana bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and critical for SWI/SNF genomic targeting. These three BRDs interact directly with multiple SWI/SNF subunits, including the BRAHMA (BRM) catalytic subunit. Phenotypic and transcriptomic analyses of the brd1 brd2 brd13 triple mutant revealed that these BRDs act largely redundantly to control gene expression and developmental processes that are also regulated by BRM. Genome-wide occupancy profiling demonstrated that these three BRDs extensively colocalize with BRM on chromatin. Simultaneous loss of function of three BRD genes results in reduced BRM protein levels and decreased occupancy of BRM on chromatin across the genome. Furthermore, we demonstrated that the bromodomains of BRDs are essential for genomic targeting of the BRD subunits of SWI/SNF complexes to their target sites. Collectively, these results demonstrate that BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and reveal their biological roles in facilitating genomic targeting of BRM-containing SWI/SNF complexes in plants.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/química
3.
Plant Physiol ; 186(1): 534-548, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33620498

RESUMEN

In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Proteínas de Dominio MADS/genética , Proteínas Represoras/genética , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas Represoras/metabolismo , Plantones/genética , Semillas/genética
4.
Nucleic Acids Res ; 49(1): 98-113, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33270882

RESUMEN

The Polycomb repressive complex 2 (PRC2) catalyzes histone H3 Lys27 trimethylation (H3K27me3) to repress gene transcription in multicellular eukaryotes. Despite its importance in gene silencing and cellular differentiation, how PRC2 is recruited to target loci is still not fully understood. Here, we report genome-wide evidence for the recruitment of PRC2 by the transcriptional repressors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 in Arabidopsis thaliana. We show that the val1 val2 double mutant possesses somatic embryonic phenotypes and a transcriptome strikingly similar to those of the swn clf double mutant, which lacks the PRC2 catalytic subunits SWINGER (SWN) and CURLY LEAF (CLF). We further show that VAL1 and VAL2 physically interact with SWN and CLF in vivo. Genome-wide binding profiling demonstrated that they colocalize with SWN and CLF at PRC2 target loci. Loss of VAL1/2 significantly reduces SWN and CLF enrichment at PRC2 target loci and leads to a genome-wide redistribution of H3K27me3 that strongly affects transcription. Finally, we provide evidence that the VAL1/VAL2-RY regulatory system is largely independent of previously identified modules for Polycomb silencing in plants. Together, our work demonstrates an extensive genome-wide interaction between VAL1/2 and PRC2 and provides mechanistic insights into the establishment of Polycomb silencing in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Represión Epigenética , Ontología de Genes , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 2/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Elementos de Respuesta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Plant Physiol ; 184(4): 1969-1978, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037128

RESUMEN

Seed dormancy is an adaptive trait that is crucial to plant survival. Abscisic acid (ABA) is the primary phytohormone that induces seed dormancy. However, little is known about how the level of ABA in seeds is determined. Here we show that the Arabidopsis (Arabidopsis thaliana) H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 (REF6) suppresses seed dormancy by inducing ABA catabolism in seeds. Seeds of the ref6 loss-of-function mutants displayed enhanced dormancy that was associated with increased endogenous ABA content. We further show that the transcripts of two genes key to ABA catabolism, CYP707A1 and CYP707A3, but not genes involved in ABA biosynthesis, were significantly reduced in ref6 mutants during seed development and germination. In developing siliques, REF6 bound directly to CYP707A1 and CYP707A3, and was responsible for reducing their H3K27me3 levels. Genetic analysis demonstrated that the enhanced seed dormancy and ABA concentration in ref6 depended mainly on the reduced expression of CYP707A1 and CYP707A3 Conversely, overexpression of CYP707A1 could offset the enhanced seed dormancy of ref6 Taken together, our results revealed an epigenetic regulation mechanism that is involved in the regulation of ABA content in seeds.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Epigénesis Genética , Germinación/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
6.
Nat Plants ; 6(8): 996-1007, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32747760

RESUMEN

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodelling complexes are multi-protein machineries that control gene expression by regulating chromatin structure in eukaryotes. However, the full subunit composition of SWI/SNF complexes in plants remains unclear. Here we report that in Arabidopsis thaliana, two homologous glioma tumour suppressor candidate region domain-containing proteins, named BRAHMA-interacting proteins 1 (BRIP1) and BRIP2, are core subunits of plant SWI/SNF complexes. brip1 brip2 double mutants exhibit developmental phenotypes and a transcriptome remarkably similar to those of BRAHMA (BRM) mutants. Genetic interaction tests indicated that BRIP1 and BRIP2 act together with BRM to regulate gene expression. Furthermore, BRIP1 and BRIP2 physically interact with BRM-containing SWI/SNF complexes and extensively co-localize with BRM on chromatin. Simultaneous mutation of BRIP1 and BRIP2 results in decreased BRM occupancy at almost all BRM target loci and substantially reduced abundance of the SWI/SNF assemblies. Together, our work identifies new core subunits of BRM-containing SWI/SNF complexes in plants and uncovers the essential role of these subunits in maintaining the abundance of SWI/SNF complexes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Piruvato Quinasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona , Factores Generales de Transcripción
7.
Biochem Biophys Res Commun ; 508(3): 695-700, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30527808

RESUMEN

Both Histone Deacetylases HDA6 and HDA9 belong to class I subfamily of RPD3/HDA1 HDACs. Loss-of-function mutants of HDA9 form slightly blunt siliques. However, the involvement of HDA6 in regulating silique tip growth is unclear. In this study, we show that HDA6 acts redundantly with HDA9 in regulating the elongation of valve cells in the silique tip. Although the hda6 single mutant does not exhibit a detectable silique phenotype, the silique tip of hda6 hda9 double mutant displays a more severe bulge, a morphology we termed as "nock-shaped". The valve cells of the silique tip of hda9 are longer than wild-type, and loss of HDA6 in hda9 enhances the valve cell elongation phenotype. The transcript levels of auxin-signaling-related genes are mis-regulated in hda9 and hda6 hda9 siliques, and the GFP reporter driven by the auxin response promoter DR5 is weaker in hda9 or hda6 hda9 than wild-type or hda6. Thus, our findings reveal that HDA6 and HDA9 coordinately control the elongation of silique valve cells through regulating the expression of auxin-related genes in silique tips.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Semillas/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA