Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 674: 238-248, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38936080

RESUMEN

The voltage decay of Li-rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy-density lithium-ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer-scale single-crystal Li1.2Mn0.54Ni0.13Co0.13O2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Li-rich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li-rich and Mn-based cathode materials.

2.
PeerJ ; 12: e17475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827300

RESUMEN

Fertilization plays a crucial role in ensuring global food security and ecological balance. This study investigated the impact of substituting innovative biological manure for chemical fertilization on rice (Oryza sativa L) productivity and soil biochemical properties based on a three-year experiment. Our results suggested rice yield and straw weight were increased under manure addition treatment. Specifically, 70% of total nitrogen (N) fertilizer substituted by biological manure derived from straw, animal waste and microbiome, led to a substantial 13.6% increase in rice yield and a remarkable 34.2% boost in straw weight. In comparison to the conventional local farmer practice of applying 165 kg N ha-1, adopting 70% of total N plus biological manure demonstrated superior outcomes, particularly in enhancing yield components and spike morphology. Fertilization treatments led to elevated levels of soil microbial biomass carbon and N. However, a nuanced comparison with local practices indicated that applying biological manure alongside urea resulted in a slight reduction in N content in vegetative and economic organs, along with decreases of 10.4%, 11.2%, and 6.1% in N recovery efficiency (NRE), respectively. Prudent N management through the judicious application of partial biological manure fertilizer in rice systems could be imperative for sustaining productivity and soil fertility in southern China.


Asunto(s)
Fertilizantes , Estiércol , Nitrógeno , Oryza , Suelo , Nitrógeno/metabolismo , Nitrógeno/análisis , Estiércol/análisis , Fertilizantes/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Suelo/química , China , Agricultura/métodos , Microbiología del Suelo , Biomasa , Animales , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
3.
Front Plant Sci ; 15: 1354384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742214

RESUMEN

One-time application of blended controlled-release nitrogen fertilizer (CRN) has the potential to solve the difficulty of top-dressing fertilizer in the cultivation of rice and reduce the cost of CRN fertilizer application. However, its effects on rice dry matter and nitrogen (N) accumulation and translocation, yield and N-use efficiency (NUE) remain uncertain. Field experiments were carried out at three sites (Mingguang, Chaohu, and Guichi) in the Yangtze River Delta in China to compare the effects of the conventional split applications of urea and the blended CRN and on post-anthesis dry matter and N accumulation and translocation, yield, and NUE in rice at 0, 60, 120, 180, and 240 kg N ha-1. The results showed that at the equal N application rates, compared under the conventional N fertilizer treatment, the blended CRN application significantly increased the rice yield by an average of 0.9-6.9%, mainly due to increase the number of spikelets per panicle. The highest yield achieved with blended CRN treatment occurred at 200 kg N ha-1, with an NUE of 45.9%. Moreover, in comparison to the conventional N fertilizer, the blended CRN treatment increased pre-anthesis N translocation (Pre-NT) by 1.0-19.8%, and the contribution of pre-NT to grain N by 0.2-8.7%, and NUE by 3.2-28.4%. Meanwhile, the blended CRN treatment reduced labor costs by 1800 Yuan ha-1 and enhanced the economic gains by 21.5-68.8%. Therefore, one-time application of blended CRN ≤ 200 kg N ha-1 application rate improved rice yield, NUE, and economic profit compared to equivalent rates of split applied conventional N fertilizers.

4.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730895

RESUMEN

To investigate the impact of Al and Nb elements on the formation of a protective oxide layer on the surface of Fe-35Ni-20Cr-xAl-yNb (x = 0, 2, 4, 6 wt.%; y = 0, 1, 2 wt.%) alloys, their oxidation behavior was examined at 1000 °C, 10-17 atm. and 10-25 atm. oxygen pressure, and the oxidation mechanism was analyzed by Factsage and Pandat calculations. Enhancing the Al content at 10-17 atm. inhibited the generation of FeCr2O4 on the alloy surface and increased the Al content in the M2O3 layer. When the Al content exceeded 6 wt.%, the oxide film partially peeled off. It was found that the addition of Nb increased the activity of Cr and Al and decreased the activity of Ni and Fe and promoted the formation of Al2O3, and the appearance of Nb2O5 in the subsurface layer increased the density of the oxide film. In addition, under an oxygen pressure of 10-25 atm., the only protective layer on the surface of the alloy comprised of Al2O3. The experimental results demonstrated that the Fe-35Ni-20Cr-4Al-2Nb alloy generated a continuous and dense Al2O3 protective film, and the reduction in oxygen pressure and the addition of Nb elements were favorable for selective external oxidation of Al2O3.

5.
J Mol Cell Biol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692847

RESUMEN

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.

6.
ACS Appl Mater Interfaces ; 16(14): 17870-17880, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537160

RESUMEN

Silicon (Si) is considered as the most likely choice for the high-capacity lithium-ion batteries owing to its ultrahigh theoretical capacity (4200 mA h g-1) being over 10 times than that of traditional graphite anode materials (372 mA h g-1). However, its widespread application is limited by problems such as a large volume expansion and low electrical conductivity. Herein, we design a hollow nitrogen-doped carbon-coated silicon (Si@Co-HNC) composite in a water-based system via a synergistic protecting-etching strategy of tannic acid. The prepared Si@Co-HNC composite can effectively mitigate the volume change of silicon and improve the electrical conductivity. Moreover, the abundant voids inside the carbon layer and the porous carbon layer accelerate the transport of electrons and lithium ions, resulting in excellent electrochemical performance. The reversible discharge capacity of 1205 mA h g-1 can be retained after 120 cycles at a current density of 0.5 A g-1. In particular, the discharge capacity can be maintained at 1066 mA h g-1 after 300 cycles at a high current density of 1 A g-1. This study provides a new strategy for the design of Si-based anode materials with excellent electrical conductivity and structural stability.

7.
Chaos ; 33(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712915

RESUMEN

In this paper, we propose an efficient segmentation approach in order to divide a multivariate time series through integrating principal component analysis (PCA), visibility graph theory, and community detection algorithm. Based on structural characteristics, we can automatically divide the high-dimensional time series into several stages. First, we adopt the PCA to reduce the dimensions; thus, a low dimensional time series can be obtained. Hence, we can overcome the curse of dimensionality conduct, which is incurred by multidimensional time sequences. Later, the visibility graph theory is applied to handle these multivariate time series, and corresponding networks can be derived accordingly. Then, we propose a community detection algorithm (the obtained communities correspond to the desired segmentation), while modularity Q is adopted as an objective function to find the optimal. As indicated, the segmentation determined by our method is of high accuracy. Compared with the state-of-art models, we find that our proposed model is of a lower time complexity (O(n3)), while the performance of segmentation is much better. At last, we not only applied this model to generated data with known multiple phases but also applied it to a real dataset of oil futures. In both cases, we obtained excellent segmentation results.

8.
Entropy (Basel) ; 25(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37628273

RESUMEN

In this article, the authors analyzed the nonlinear effects of projective synchronization between coupled memristive neural networks (MNNs) and their applications. Since the complete signal transmission is difficult under parameter mismatch and different projective factors, the delays, which are time-varying, and uncertainties have been taken to realize the projective synchronization of MNNs with multi-links under the nonlinear control method. Through the extended comparison principle and a new approach to dealing with the mismatched parameters, sufficient criteria have been determined under different types of projective factors and the framework of the Lyapunov-Krasovskii functional (LKF) for projective convergence of the coupled MNNs. Instead of the classical treatment for secure communication, the concept of error of synchronization between the drive and response systems has been applied to solve the signal encryption/decryption problem. Finally, the simulations in numerical form have been demonstrated graphically to confirm the adaptability of the theoretical results.

9.
Reprod Domest Anim ; 58(9): 1261-1269, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37438878

RESUMEN

This study was focused on the effects of ovary acquisition season, embryo transfer season, and conditions of surrogate sows on cloning efficiency, with the objective of improving the production of cloned pigs. The statistical analysis documented that cloning efficiency was highest when ovary extraction and embryo transfer occurred in the spring, and lowest when such operations occurred in the autumn. This was evidenced by the higher number of recovered oocytes (3.2 ± 0.47 vs. 2.5 ± 0.51), rate of mature oocytes (57.4 ± 0.07% vs. 48.9 ± 0.06%), rate of developed cloned blastocysts (35.7 ± 0.12% vs. 34.4 ± 0.07%), pregnancy rate of surrogate sows (73.5% vs. 33.3%), delivery rate (67.6% vs. 16.7%), litter size (6.9 ± 2.3 vs. 2.3 ± 2.5), and the number of alive newborns (5.7 ± 2.2 vs. 1.3 ± 1.2). Cloning efficiency was little affected by the ovulatory status of the surrogate sow prior to embryo transfer. The length of pregnancy, the parity, and the length of labor of the surrogate sow significantly affected the efficiency of generating pigs cloned from somatic cells. Specifically, when length of pregnancy ranged from 111 to 117 days, surrogate sows with shorter gestation period had larger litter size (8.9 ± 2.8) and a higher number of stillbirths per litter (2.1 ± 2.0). Moreover, statistical analysis indicated that selecting sows with 2-4 parities as surrogates led to increased litter size (7.7 ± 3.0) and the number of alive newborns (6.4 ± 3.1). In comparison with naturally breeding sows, the surrogate sows spent more time giving birth and suffered higher rates of stillbirth. The data obtained in this study provide valuable insights for improving the production efficiency of somatic cell cloned pigs.


Asunto(s)
Clonación de Organismos , Enfermedades de los Porcinos , Porcinos , Embarazo , Animales , Femenino , Estaciones del Año , Paridad , Tamaño de la Camada , Clonación de Organismos/veterinaria , Mortinato/veterinaria , Clonación Molecular , Lactancia
10.
Genes (Basel) ; 14(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37372393

RESUMEN

Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in Haiyang Yellow Chickens' growth and to understand the regulatory role of the key gene ALOX5 (arachidonate 5-lipoxygenase) in myoblast proliferation and differentiation. In order to search the key candidate genes in the process of muscle growth and development, RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages and to analyze the effects of ALOX5 gene interference and overexpression on myoblast proliferation and differentiation at the cellular level. The results showed that 5743 differentially expressed genes (DEGs) (|fold change| ≥ 2; FDR ≤ 0.05) were detected by pairwise comparison in male chickens. Functional analysis showed that the DEGs were mainly involved in the processes of cell proliferation, growth, and developmental process. Many of the DEGs, such as MYOCD (Myocardin), MUSTN1 (Musculoskeletal Embryonic Nuclear Protein 1), MYOG (MYOGenin), MYOD1 (MYOGenic differentiation 1), FGF8 (fibroblast growth factor 8), FGF9 (fibroblast growth factor 9), and IGF-1 (insulin-like growth factor-1), were related to chicken growth and development. KEGG pathway (Kyoto Encyclopedia of Genes and Genomes pathway) analysis showed that the DEGs were significantly enriched in two pathways related to growth and development: ECM-receptor interaction (Extracellular Matrix) and MAPK signaling pathway (Mitogen-Activated Protein Kinase). With the extension of differentiation time, the expression of the ALOX5 gene showed an increasing trend, and it was found that interference with the ALOX5 gene could inhibit the proliferation and differentiation of myoblasts and that overexpression of the ALOX5 gene could promote the proliferation and differentiation of myoblasts. This study identified a range of genes and several pathways that may be involved in regulating early growth, and it can provide theoretical research for understanding the regulation mechanism of muscle growth and development of Haiyang Yellow Chickens.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Pollos , Masculino , Animales , Pollos/genética , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Perfilación de la Expresión Génica , Mioblastos , Músculo Esquelético/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética
11.
J Biol Chem ; 299(7): 104909, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307917

RESUMEN

Sustainable TGF-ß1 signaling drives organ fibrogenesis. However, the cellular adaptation to maintain TGF-ß1 signaling remains unclear. In this study, we revealed that dietary folate restriction promoted the resolution of liver fibrosis in mice with nonalcoholic steatohepatitis. In activated hepatic stellate cells, folate shifted toward mitochondrial metabolism to sustain TGF-ß1 signaling. Mechanistically, nontargeted metabolomics screening identified that α-linolenic acid (ALA) is exhausted by mitochondrial folate metabolism in activated hepatic stellate cells. Knocking down serine hydroxymethyltransferase 2 increases the bioconversion of ALA to docosahexaenoic acid, which inhibits TGF-ß1 signaling. Finally, blocking mitochondrial folate metabolism promoted liver fibrosis resolution in nonalcoholic steatohepatitis mice. In conclusion, mitochondrial folate metabolism/ALA exhaustion/TGF-ßR1 reproduction is a feedforward signaling to sustain profibrotic TGF-ß1 signaling, and targeting mitochondrial folate metabolism is a promising strategy to enforce liver fibrosis resolution.


Asunto(s)
Ácido Fólico , Cirrosis Hepática , Mitocondrias , Ácido alfa-Linolénico , Animales , Ratones , Ácido alfa-Linolénico/deficiencia , Ácido alfa-Linolénico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hígado/citología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ácido Fólico/metabolismo , Mitocondrias/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/metabolismo , Transducción de Señal , Retroalimentación Fisiológica
12.
Front Plant Sci ; 14: 1144461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113601

RESUMEN

Introduction: The application of controlled-release nitrogen fertilizer (CRN) has become an important production method to achieve high crop yield and ecological safety. However, the rate of urea-blended CRN for rice is usually determined by conventional urea, and the actual rate is still unclear. Methods: A five-year field experiment was carried out in the Chaohu watershed in the Yangtze River Delta to study rice yield, N fertilizer utilization efficiency (NUE), ammonia (NH3) volatilization and economic benefit under the four urea-blended CRN treatments with a 4:3:3 ratio applied at one time (60, 120, 180, 240 kg/hm2, CRN60, CRN120, CRN180, CRN240), four conventional N fertilizer treatments (N60, N120, N180, N240) and a control without N fertilizer (N0). Results and Discussion: The results showed that the N released from the blended CRNs could well satisfy the N demand of rice growth. Similar to the conventional N fertilizer treatments, a quadratic equation was used to model the relationship between rice yield and N rate under the blended CRN treatments. The blended CRN treatments increased rice yield by 0.9-8.2% and NUE by 6.9-14.8%, respectively, compared with the conventional N fertilizer treatments at the same N application rate. The increase in NUE in response to applied blended CRN was related to the reduction in NH3 volatilization. Based on the quadratic equation, the five-year average NUE under the blended CRN treatment was 42.0% when rice yield reached the maximum, which was 28.9% higher than that under the conventional N fertilizer treatment. Among all treatments, CRN180 had the highest yield and net benefit in 2019. Considering the yield output, environmental loss, labor and fertilizer costs, the optimum economic N rate under the blended CRN treatment in the Chaohu watershed was 180-214 kg/hm2, compared with 212-278 kg/hm2 under the conventional N fertilizer treatment. The findings suggest that blended CRN improved rice yield, NUE and economic income while decreasing NH3 volatilization and negative environmental outcomes.

13.
Life (Basel) ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36983780

RESUMEN

Cake fertilizer and dairy manure were used as experimental materials to carry out a 9-year (2012-2020) field experiment in the main rice production areas in the Yangtze River basin. Different fertilization modes were used (no fertilization, CK; chemical fertilizer application alone, HY; reduced fertilization with chemical fertilizer application, RF; cake fertilizer replacement of nitrogen fertilizer, CFR; and dairy manure replacement of nitrogen fertilizer, DMR). Changes in the total rice yield, yield components, absorption of nitrogen, soil pH, organic matter, total nitrogen, and soil bulk density under different fertilization treatments were analyzed. The results show that organic fertilizer replacement leads to a stable and high rice yield. The 9-year average rice yields of the CFR and DMR treatments were 60.0% and 61.5% higher than that of CK. The nitrogen uptake of the CFR and DMR treatments was also higher than that of the other treatments. The nitrogen recovery efficiency in the current season could be increased by 16.37-22.89%, and after 9 years of testing, the soil total nitrogen contents of CFR and DMR increased by 0.23-0.85 g·kg-1 compared to the other treatments. The available P and K contents of DMR increased by 30.17 mg·kg-1 and 22.02 mg·kg-1 compared with HY, respectively. The soil bulk density was reduced by 0.08 g·cm-3. Generally, the effects of dairy manure replacement were better than those of cake fertilizer. This is an important method that can be used to fertilize the soil and foster sustainable soil utilization in the rice-growing area of the Yangtze River Basin, as a long-term partial replacement for chemical nitrogen fertilizer.

14.
J Colloid Interface Sci ; 641: 747-757, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965345

RESUMEN

As a viable replacement to commercial graphite anodes, silicon (Si) anodes have gained much attention from academics because of their considerable theoretical specific capacity and appropriate reaction voltage. Nevertheless, some limitations still exist in developing silicon anodes, including significant volume expansion and poor electrical conductivity. Herein, the carbon nanotubes (CNTs) interconnected yolk-shell silicon/carbon anodes (YS-Si@CoNC) were prepared via the chelation competition induced polymerization (CCIP) approach. The YS-Si@CoNC anode, designed in this study, demonstrates improved performance. At the current density of 0.5 A g-1 and 1 A g-1, a capacity of 1001 mAh g-1 and 956.5 mAh g-1 can be achieved after 150 cycles and after 300 cycles, respectively. In particular, at the current density of 5 A g-1, the reversible specific capacity of 688 mAh g-1 is realized. The exceptional outcomes are mainly attributed to the internal voids that adequately alleviate the volumetric expansion and the CNTs and carbon shells that provide an efficient conducting matrix to fasten the diffusion of electrons and lithium-ions. Our research presents a convenient way of designing Si/C anode materials with a yolk-shell structure to guarantee impressive electrical conductivity and robust structural integrity for high-performance LIBs.

15.
J Sci Food Agric ; 103(4): 1692-1703, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305046

RESUMEN

BACKGROUND: Understanding of mechanisms that underpin high-yielding cropping systems is essential for optimizing management practices. Currently, the contribution of plant traits such as leaf area, chlorophyll content and intercepted photosynthetically active radiation (PARi ) to yield and nitrogen use efficiency (NUE) are not fully understood. In addition, the understanding of how canopy traits are affected by nitrogen (N) management practices is unclear. The present study aimed to determine the effect of amendment with controlled release urea (CR), common urea or no urea on NUE and plant eco-physiological characteristics in a 2-year field study in a double rice cropping system. RESULTS: Regulation of N release through amendment with CR significantly increased grain yield, NUE and leaf morpho-physiological attributes. CR coupled with common urea (at comparable total N rates) increased leaf area index (LAI), relative chlorophyll content index (CCI) and PARi , leading to higher grain yield and NUE (increased 24.4% and 25.3% in early and late rice, respectively) compared to local farming practice. Structural equation model (SEM) analysis showed that differences in N application, between CR and common urea, directly accounted for differences observed in soil nutrient, PARi and NUE rather than yield components. Additionally, compared to traditional yield determinants, LAI and PARi (between booting and filling stage) are capable of predicting and explaining grain yield by 0.69 and 0.92 of R2 in early and late rice, respectively. CONCLUSION: Leaf morpho-physiological traits are important for developing N management practices to increase NUE and improve food security for paddy agriculture in southern China. © 2022 Society of Chemical Industry.


Asunto(s)
Oryza , Oryza/química , Preparaciones de Acción Retardada/análisis , Nitrógeno/análisis , Urea/química , Fertilizantes/análisis , Agricultura , Suelo/química , Hojas de la Planta/química , Clorofila/análisis , Grano Comestible/química , China
16.
Microorganisms ; 10(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363766

RESUMEN

As an cultivated aquatic vegetable, the long-term continuous monocropping of water oat results in the frequent occurrence of diseases, the deterioration of ecological system and decreased quality of water oat. In this study, real-time quantitative PCR (qPCR) and Illumina high-throughput sequencing were used to determine the dynamic changes in bacterial and fungal communities in rhizosphere soil under continuous cropping of water oat for 1, 5, 10, 15 and 20 years (Y1, Y5, Y10, Y15 and Y20), and soil properties and enzyme activities were also determined. Results showed that the contents of soil organic carbon (SOC), total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP) and the activities of four soil enzymes increased in Y5 and Y10 and then decreased in Y15 and Y20. Spearman correlation analysis identified SOC, TN, AP and AN as the main factors that affect the four enzyme activities. The qPCR results showed that there was no significant difference in bacterial abundance between the different planting years, while the fungal abundance first increased and then decreased. The long-term continuous planting of water oat (Y15 and Y20) significantly reduced the operational taxonomic unit numbers and the Shannon, Chao1, and ACE indices of rhizosphere bacteria and fungi. The bacterial and fungal community compositions were markedly affected by the continuous planting year. The relative abundances of Bacteroidetes and Firmicutes decreased significantly in Y10 and Bacteroidetes increased significantly in Y15. Relative abundances of dominated Mortierellomycota and Ascomycota phyla increased with the continuous cropping years, while Rozellomycota presented the opposite trend. The AK, AN, and SOC were the main factors that changed the bacterial community, while AK and AP significantly shifted the fungal community. Thus, long-term continuous planting of water oat resulted in the deterioration of soil nutrients and microbial communities. The results provided a reference for the remediation of soil under continuous water oat planting and sustainable development of water oat industry.

17.
Front Neurorobot ; 16: 985312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160287

RESUMEN

The dynamic behavior of memristive neural networks (MNNs), including synchronization, effectively keeps the robotic stability against numerous uncertainties from the mimic of the human brain. However, it is challenging to perform projective quasi-synchronization of coupled MNNs with low-consumer control devices. This is partly because complete synchronization is difficult to realize under various projective factors and parameter mismatch. This article aims to investigate projective quasi-synchronization from the perspective of the controller. Here, two approaches are considered to find the event-triggered scheme for lag synchronization of coupled MNNs. In the first approach, the projective quasi-synchronization issue is formulated for coupled MNNs for the first time, where the networks are combined with time-varying delays and uncertainties under the constraints imposed by the frequency of controller updates within limited system communication resources. It is shown that our methods can avoid the Zeno-behavior under the newly determined triggered functions. In the second approach, following classical methods, a novel projective quasi-synchronization criterion that combines the nonlinear property of the memristor and the framework of Lyapunov-Krasovskii functional (LKF) is proposed. Simulation results indicate that the proposed two approaches are useful for coupled MNNs, and they have less control cost for different types of quasi-synchronization.

18.
Oncoimmunology ; 11(1): 2118210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092638

RESUMEN

Resistance remains an obstacle to anti-programmed cell death protein 1 (PD-1) therapy in human cancer. One critical resistance mechanism is the lack of T cell chemotaxis in the tumor microenvironment (TME). CXCL10-CXCR3 signaling is required for T cell tumor infiltration and tumor immunotherapy. Oncolytic viruses (OVs), including oncolytic adenoviruses (AdVs), induce effective T cell immunity and tumor infiltration. Thus, arming OV with CXCL10 would be an attractive strategy to overcome resistance to anti-PD1 therapy. Here, we successfully constructed a novel recombinant oncolytic adenovirus encoding murine CXCL10, named Adv-CXCL10. Through intratumoural injection, the continuous expression of the functional chemokine CXCL10 in the TME is realized to recruit more CXCR3+ T cells into the TME to kill tumor cells, and the recombinant adenovirus shows great power to 'fire up' the TME and enhance the antitumour efficiency of PD-1 antibodies.


Asunto(s)
Infecciones por Adenoviridae , Neoplasias , Virus Oncolíticos , Rabdomiosarcoma Alveolar , Adenoviridae/genética , Animales , Quimiocina CXCL10/genética , Quimiotaxis , Humanos , Ratones , Neoplasias/terapia , Virus Oncolíticos/genética , Microambiente Tumoral
19.
Toxicol Appl Pharmacol ; 420: 115530, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33845055

RESUMEN

Chronic Kidney Disease (CKD) is a serious threat to human health. In addition, kidney fibrosis is a key pathogenic intermediate for the progression of CDK. Moreover, excessive activation of fibroblasts is key to the development of kidney fibrosis and this process is difficult to control. Notably, fraxinellone is a natural compound isolated from Dictamnus dasycarpus and has a variety of pharmacological activities, including hepatoprotective, anti-inflammatory and anti-cancer effects. However, the effect of fraxinellone on kidney fibrosis is largely unknown. The present study showed that fraxinellone could alleviate folic acid-induced kidney fibrosis in mice in a dose dependent manner. Additionally, the results revealed that fraxinellone could effectively down-regulate the expression of CUGBP1, which was highly up-regulated in human and murine fibrotic renal tissues. Furthermore, expression of CUGBP1 was selectively induced by the Transforming Growth Factor-beta (TGF-ß) through p38 and JNK signaling in kidney fibroblasts. On the other hand, downregulating the expression of CUGBP1 significantly inhibited the activation of kidney fibroblasts. In conclusion, these findings demonstrated that fraxinellone might be a new drug candidate and CUGBP1 could be a promising target for the treatment of kidney fibrosis.


Asunto(s)
Benzofuranos/farmacología , Proteínas CELF1/metabolismo , Fibroblastos/efectos de los fármacos , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Animales , Proteínas CELF1/genética , Línea Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ácido Fólico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Endogámicos C57BL , Ratas , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Int Immunopharmacol ; 95: 107567, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756225

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. However, the mechanism of tissue tropism of SARS-CoV-2 remains unclear. Here, recombinant receptor-binding subdomain 1 of spike protein of SARS-CoV-2 (RBD-SD1) was used as a probe to investigate the potential tropism of SARS-CoV-2 in thirty-three types of normal human tissues. RBD-SD1 probe was observed to interact with cells in reported SARS-CoV-2 infected organs. Interestingly, the RBD-SD1 probe strongly interacted with bone marrow cells in an angiotensin-converting enzyme 2 (ACE2)-independent manner. In addition, SARS-CoV-2 induced the ACE2 mRNA expression in human primary bone marrow cells, suggesting human bone marrow cells may be sensitive to SARS-CoV-2 infection. Therefore, human bone marrow cells could be strongly infected by SARS-CoV-2, which may play an important role in the pathogenesis of COVID-19. These findings provide a deeper understanding of SARS-CoV-2 infection routes, thus contributing to the treatment of COVID-19.


Asunto(s)
SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Humanos , Pulmón/citología , Pulmón/metabolismo , Cultivo Primario de Células , Unión Proteica , Dominios Proteicos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...