Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(11): 7821-7827, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805614

RESUMEN

Total synthesis of simonsol C has been achieved, focusing on the postdearomatization transformations. Our methodology integrates an efficient combination of dearomatization and Zn/AcOH reduction to introduce an allyl group, followed by oxo-Michael addition, to construct the 6/5/6 benzofuran skeleton. It offers a novel method for synthesizing allyl-containing quaternary carbon atoms in a straightforward manner.

2.
Int J Biol Macromol ; 262(Pt 2): 130148, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354929

RESUMEN

Two biobased composite films have been prepared with poly (lactic acid-trimethylene carbonate), polylactic acid and Laponite by solvent evaporation method. The 1H NMR and FTIR spectrums illustrate that P (LA-TMC) polymer is successfully synthesized and designed composite films are produced. Morphometric analyses demonstrate that the roughnesses of the film's surface and cross-section are on the increase with higher PLA and Laponite content. Mechanical performances reveal that the rise in tensile strength and modulus while maintaining excellent elongation at break is mainly due to the increase in the content of polylactic acid and Laponite. By utilizing the nano effect of Laponite, the maximum tensile strength of the composite film reaches 34.59 MPa. Thermal property results illustrate that the Tg and initial decomposition temperature are on the growth with the increase of PLA content. However, it is not significant on the effect of Laponite on the initial decomposition temperature. The water vapor permeability measurements prove that the barrier property of P(LA-TMC)/PLA/Laponite composite film is on the ascent with the Laponite addition. Hydrolytic degradation tests indicate that PLA and Laponite play avital part in accelerating the degradation rate of composite films and alkaline media is superior acidic and neutral conditions.


Asunto(s)
Dioxanos , Ácido Láctico , Polímeros , Silicatos , Ácido Láctico/química , Polímeros/química , Poliésteres/química
3.
Food Chem X ; 20: 100996, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144825

RESUMEN

Poly (lactic acid) (PLA) composite films with the addition of mesoporous silica nanoparticles MSN (0, 2, 4 and 6 wt%) loaded with 10 wt% citral (CIT) were prepared for application in Chanterelles packaging. Composite films with added MSN/CIT showed good mechanical properties, especially 4MSN/CIT/PLA. Changes in physicochemical properties and bacterial flora of Chanterelles during packaging and storage were tested. Compared with CIT/PLA, Chanterelles packed with 4MSN/CIT/PLA showed about 1.62-times lower browning value, 1.53-times lower electrolyte permeability, and 1.83- and 1.78-times lower PPO and POD, respectively, at 12 day. Better physicochemical properties of Chanterelles can be maintained. For bacterial flora changes, Chanterelles packaged with 4MSN/CIT/PLA had more stable flora (p < 0.05) and lower species diversity during storage (p < 0.05), effectively controlling the growth and reproduction of their dominant spoilage bacteria (Enterobacteriaceae spp). In conclusion, the composite membranes obtained by the addition of MSN/CIT to PLA have great potential in the storage of Chanterelles.

4.
Polymers (Basel) ; 15(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959988

RESUMEN

The aim of this study was to prepare a novel pH-sensitive smart film based on the addition of purple garlic peel extract (PGE) and TiO2 nanoparticles in a sodium alginate (SA)/polyvinyl alcohol (PVA) matrix to monitor the freshness of beef. FT-IR spectroscopy revealed the formation of stronger interaction forces between PVA/SA, PGE, and TiO2 nanoparticles, which showed good compatibility. In addition, the addition of PGE improved the tensile strength and elongation at break of the composite film, especially in different pH environments, and the color response was obvious. The addition of 1% TiO2 nanoparticles significantly improved the mechanical properties of the film, as well as the light barrier properties of the film. PGE could effectively be uniformly dispersed into the composite film, but it also had a certain slow-release effect on the release of PGE. PGE had high sensitivity under different pH conditions with rich color changes, and the color showed a clear color change from red to yellow-green when the pH increased from 1 to 14. The same change was observed when it was added to the film. In particular, by applying this film to the process of beef preservation, we judged the freshness of beef by monitoring the changes in the TVB-N value and pH value during the storage process of beef and found that the film showed obvious color changes during the storage process of beef, from blue (indicating freshness) to red (indicating non-freshness), and finally to yellow-green (indicating deterioration), which indicated that the color change of the film and the freshness of the beef maintained a highly consistent.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37922463

RESUMEN

High-entropy oxides (HEOs) are crucial in various fields (power storage/conversion, electronic devices, and catalysis) owing to their adjustable structural characteristics, fabulous stability, and massive components. However, the current strategies for synthesizing HEOs suffer from low surface area and limited active sites. Herein, we present a salt-assisted strategy with remarkable universality for the preparation of HEOs with high surface area [e.g., HP-(FeCrCoNiCu)xOy: 59 m2/g, HP-(ZnMgNiCuCo)xOy: 49 m2/g, and HP-(CrMnFeNiZn)xOy: 11 m2/g], where HP means high porosity. Especially, HP-(FeCrCoNiCu)xOy with rich-oxygen vacancies promotes catalytic efficiency for hydrocarbon and alcohol oxidation owing to its hierarchical texture and massive oxygen vacancies. Furthermore, density functional theory is utilized to well illustrate the relationship of the structure and catalytic efficiency within the catalysts. This work offers realistic pathway for the large-scale application of HEOs in catalytic areas.

6.
Carbohydr Polym ; 321: 121295, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739528

RESUMEN

To accurately determine flavonoids (rutin, quercetin or kaempferol), it is necessary to extract them from complex matrices. The ultrasound-assisted magnetic dispersion microsolid phase extraction technique has been predominantly used for separation and enrichment of the target analytes. The combination of magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent (DESP) is likely to enhance the efficiency of flavonoid extraction from food. In this study, adsorbents were prepared by modifying chitosan with magnetic nanoparticles, and the eluent was a DESP derived from ß-cyclodextrin and an organic acid. The successful preparation of these materials was confirmed by FTIR, XRD, FE-SEM and 1H NMR. The extraction recovery rates exceeded 93 %, with limits of detection and quantitation ranging from 0.9 to 2.4 µg/L and 2.7 to 7.2 µg/L, respectively, and the flavonoid clearance rates for ABTS and DPPH radicals reached 100 %. Therefore, the integration of magnetic chitosan nanoparticles with the DESP provides a new and efficient method for the extraction of flavonoids while also presenting a potential application of the DESP in separations.


Asunto(s)
Quitosano , Nanopartículas de Magnetita , beta-Ciclodextrinas , Flavonoides , Quercetina
7.
Front Oncol ; 13: 1244202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637051

RESUMEN

Cervical adenocarcinoma accounts for 10%-25% of total cases of cervical carcinoma. But in recent years, the incidence of adenocarcinoma has risen both proportionally and absolutely. Clinically, most cervical adenocarcinoma show no symptom or present with abnormal uterine bleeding or vaginal discharge, similar to squamous cell carcinoma. What different about it is that cervical cytological testing demonstrates a high false-negative rate of cervical adenocarcinoma, potentially leading to the failure in detecting in early stage. This report presents two cases both with pelvic masses, and massive ascites served as the initial symptom, which is similar to the clinical symptom of ovarian cancer, but ultimately diagnosed with cervical adenocarcinoma through surgical specimens. There are few literature reports on this situation. Hence, a literature review also has been performed to improve the recognition for cervical adenocarcinoma presenting with pelvic masses and massive ascites, and to avoid misdiagnosis.

8.
Food Chem ; 428: 136784, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429236

RESUMEN

A nanofiber film was prepared by a facile electrospinning technique using polylactide (PLA), butterfly pea flower extract (BPA) and cinnamaldehyde (CIN). The as-prepared film shows the prominent antioxidative, antibacterial, colorimetric and hydrophobic properties so that the beef freshness can be monitored and maintained up to 6 days at 4 °C simultaneously. Besides, the nanofiber structure endows the film with a fast color responsiveness under acidic-alkaline atmospheres with different concentrations. Moreover, this film exhibits higher tensile strength (9.56 Mpa) than that of the pure PLA electrospinning film (4.40 Mpa). Especially the introduction of the BPA effectively boosts the antimicrobial ability of the CIN. The freshness, sub-freshness and spoilage levels of the beef can be easily testified by observing the color difference change of the film. So the polylactide based multifunctional film as an intelligent packaging has an excellent potential for the sub-freshness detection of meat.


Asunto(s)
Acroleína , Poliésteres , Animales , Bovinos , Antibacterianos , Embalaje de Alimentos , Concentración de Iones de Hidrógeno , Antocianinas
9.
Chemosphere ; 338: 139508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37459925

RESUMEN

A combination of magnetic κ-carrageenan nanoparticles and deep eutectic supramolecular solvents used for extraction of catechol from water was evaluated by the magnetic dispersion solid phase extraction method. The magnetic κ-carrageenan nanoparticles (KC@Fe3O4MNPs) and the deep eutectic supramolecular solvent (DESP) were characterised by 1H NMR, FT-IR, XRD, SEM, VSM, TG, and BET. The adsorption kinetics, adsorption isothermal model, adsorption thermodynamics and effects of pH and salt concentration were investigated. Additionally, the factors used in the desorption process, such as the type, dosage, concentration and time, were analysed. Under the optimised conditions, the analytes were linear over the range 5-5000 ng mL-1, with a correlation coefficient greater than 0.999 and detection and quantitation limits of 1.6 and 4.7 ng mL-1, respectively. The procedure was successfully applied to determinations of the analytes of interest in spiked water samples with relative average recoveries ranging from 94.3% to 101.5%. These results indicated that the combination of functionalized magnetic nanoparticles and DESP had high specificity and extraction efficiency for catechol and will be a feasible alternative to conventional analyses of organic phenolic pollutants in water.


Asunto(s)
Fenómenos Magnéticos , Agua , Agua/química , Carragenina , Espectroscopía Infrarroja por Transformada de Fourier , Solventes/química , Catecoles , Extracción en Fase Sólida/métodos , Límite de Detección
10.
Environ Res ; 236(Pt 2): 116778, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517482

RESUMEN

The fabrication of an adsorbent with excellent performance has been a focus of attention because of the toxicity, mutagenicity and carcinogenicity of methyl orange (MO)-containing wastewater discharged from the textile, tannery and pharmaceutical industries. In this study, chitosan (CS) membranes were modified with a deep eutectic supramolecular polymer (DESP), and adsorbent membranes with porous structures were prepared with polyethylene glycol (PEG). Microstructural characterization of the CS-DESP-PEG composite membranes with FT-IR, XRD and SEM showed that the membranes had amorphous crystalline structures and that hydrogen bonding interactions weakened the crystallinity and formed loose porous structures. Optimization of the chitosan to ß-cyclodextrin ratio, pH, PEG proportion, MO concentration and adsorbent dose significantly improved the adsorption efficiencies of the membranes. The adsorption behaviours of the membranes were fit with pseudo-second-order adsorption kinetics and the Freundlich adsorption isotherm model. Regeneration experiments showed that the membranes were reusable multiple times and maintained good adsorption capacities.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Quitosano/química , Adsorción , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
11.
Polymers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242909

RESUMEN

Despite the unique features of poly-L-lactic acid (PLLA), its mechanical properties, such as the elongation at break, need improvement to broaden its application scope. Herein, poly(1,3-propylene glycol citrate) (PO3GCA) was synthesized via a one-step reaction and evaluated as a plasticizer for PLLA films. Thin-film characterization of PLLA/PO3GCA films prepared via solution casting revealed that PO3GCA shows good compatibility with PLLA. The addition of PO3GCA slightly improves the thermal stability and enhances the toughness of PLLA films. In particular, the elongation at break of the PLLA/PO3GCA films with PO3GCA mass contents of 5%, 10%, 15%, and 20% increases to 172%, 209%, 230%, and 218%, respectively. Therefore, PO3GCA is promising as a plasticizer for PLLA.

12.
Polymers (Basel) ; 15(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37112053

RESUMEN

With the increasing environmental pollution caused by disposable masks, it is crucial to develop new degradable filtration materials for medical masks. ZnO-PLLA/PLLA (L-lactide) copolymers prepared from nano ZnO and L-lactide were used to prepare fiber films for air filtration by electrospinning technology. Structural characterization of ZnO-PLLA by H-NMR, XPS, and XRD demonstrated that ZnO was successfully grafted onto PLLA. An L9(43) standard orthogonal array was employed to evaluate the effects of the ZnO-PLLA concentration, ZnO-PLLA/PLLA content, DCM(dichloromethane) to DMF(N,N-dimethylformamide) ratio, and spinning time on the air filtration capacity of ZnO-PLLA/PLLA nanofiber films. It is noteworthy that the introduction of ZnO is important for the enhancement of the quality factor (QF). The optimal group obtained was sample No. 7, where the QF was 0.1403 Pa-1, the particle filtration efficiency (PFE) was 98.3%, the bacteria filtration efficiency (BFE) was 98.42%, and the airflow resistance (Δp) was 29.2 Pa. Therefore, the as-prepared ZnO-PLLA/PLLA film has potential for the development of degradable masks.

13.
Ultrason Sonochem ; 92: 106283, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610241

RESUMEN

Ultrasound and deep eutectic supramolecular polymers (DESP) is a novel combination of green extraction method for phytochemicals. In this study, a new type of green extractant was developed: DESP. It is a derivative of deep eutectic solvent (DES) and was prepared by supramolecular polymer unit ß-cyclodextrin (ß-CD) as hydrogen bond acceptor (HBA) and organic acid as hydrogen bond donor (HBD). The current work focuses on the use of ultrasonic-assisted (UAE) DESP extraction of polyphenolic compounds (PCs) from bayberry. The experimental results showed that DESP synthesized with ß-CD and lactic acid (LA) in a ratio of 1:1 (w/w %) had the best extraction effect. And by using a three-level factor experiment and the response surface method, the predicted TPC content is very close to the actual content (28.85 ± 1.27 mg GAE/g). The DESP extract including PCs were further used as plasticizer for chitosan (CS) to prepare highly active green biofilms (DESP-CS). It is possible to reduce the tedious procedures for separating biologically active substances from DESP. The experiment proved that the prepared films have good mechanical properties, plastic deformation resistance, thermal stability and antioxidant activity.


Asunto(s)
Myrica , Polifenoles , Polifenoles/química , Ultrasonido , Solventes/química , Polímeros
14.
Food Chem ; 410: 135338, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621335

RESUMEN

A magnetic dispersive micro-solid phase extraction technique (CS@Fe3O4-MD-µSPE-DESP) based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent was developed and applied to determinations of four phenolic compounds in food samples. To prevent environmental pollution and the introduction of toxic substances, deep eutectic supramolecular solvents (DESPs), which exhibited greater desorption capacities than conventional organic solvents and deep eutectic solvents, were used as novel green eluents for the first time. Some important parameters were screened by the Plackett-Burman method and then further optimized with response surface methodology (RSM). Under the optimal conditions, the proposed method showed excellent methodological indices with linearity over the range 0.1-200.0 µg·mL-1, R2 > 0.9988, extraction recoveries above 94.8 %, and precision (RSD%) below 2.9 %. The established method finishes the process of adsorption and desorption in approximately 3 min and enhances the efficiency for determination of phenolic compounds.


Asunto(s)
Quitosano , Microextracción en Fase Líquida , Solventes , Extracción en Fase Sólida/métodos , Magnetismo , Fenómenos Magnéticos , Microextracción en Fase Líquida/métodos
15.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365614

RESUMEN

In the process of using nano-titanium dioxide (TiO2) photocatalytic treatment of organic polluted liquid, the easy aggregation and recycling difficulty of nano-TiO2 particles are important problems that cannot be avoided. Anchoring nano-TiO2 to the substrate not only limits the aggregation of nano-TiO2, but also facilitates the easy removal and reuse of nano-TiO2 after processing. Herein, coaxial electrospun nanofibrous (NFs) made of L-polylactic acid (PLLA) and chitosan (CS) are coated with graphene oxide (GO) and TiO2 for the enhanced oxidation of organic pollutants. The adsorption and photocatalysis experiment results show that, for methyl orange (MO) dye solution, the saturated removal of MO by PLLA/CS, PLLA/CS-GO and PLLA/CS-GO/TiO2 nanofibers are 60.09 mg/g, 78.25 mg/g and 153.22 mg/g, respectively; for the Congo red (CR) dye solution, the saturated removal of CR by PLLA/CS, PLLA/CS-GO and PLLA/CS-GO/TiO2 nanofiber materials were 138.01 mg/g, 150.22 mg/g and 795.44 mg/g, respectively. These three composite nanofiber membrane materials can maintain more than 80% of their adsorption capacity after four repeated cycles. They are environmentally friendly and efficient organic pollution remediation materials with promising application.

16.
Polymers (Basel) ; 14(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297984

RESUMEN

Poly(L-lactide) (PLLA) and PLLA/poly(trimethylene carbonate) (PTMC) scaffolds characterised by different PLLA:PTMC mass ratios (10:0, 9:1, 8:2, 7:3, 6:4 and 5:5) were prepared via electrospinning. The results showed that increasing the PTMC content in the spinning solution caused the following effects: (1) the diameter of the prepared PLLA/PTMC electrospun fibres gradually increased from 188.12 ± 48.87 nm (10:0) to 584.01 ± 60.68 nm (5:5), (2) electrospun fibres with uniform diameters and no beads could be prepared at the PTMC contents of >30%, (3) the elastic modulus of the fibre initially increased and then decreased, reaching a maximum value of 74.49 ± 8.22 Mpa (5:5) and (4) the elongation at the breaking point of the fibres increased gradually from 24.71% to 344.85%. Compared with the PLLA electrospun fibrous membrane, the prepared PLLA/PTMC electrospun fibrous membrane exhibited considerably improved mechanical properties while maintaining good histocompatibility.

18.
J Funct Biomater ; 13(3)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35997451

RESUMEN

Drug-loaded microspheres are an ideal bone tissue delivery material. In this study, a biodegradable Schiff base chitosan-polylactide was used as the encapsulation material to prepare drug-loaded microspheres as biocompatible carriers for controlled vancomycin release. In this regard, Schiff base chitosan was prepared by the Schiff base method, and then different proportions of the Schiff base chitosan-polylactide polymer were prepared by ring-opening polymerization. Drug-loaded microspheres were prepared by the W/O emulsion method, and the polymers and polymer microspheres were characterized and studied by NMR, IR, and antibacterial methods. The drug loading and release rates of microspheres were determined to investigate the drug loading, encapsulation efficiency, and release rate of drug microspheres at different ratios. In this study, different proportions of Schiff base chitosan-polylactic acid materials are successfully prepared, and vancomycin-loaded microspheres are successfully prepared using them as carriers. This study proves that the materials have antibacterial activities against Staphylococcus aureus and Escherichia coli. The particle size of drug-loaded microspheres was below 10 µm, and the particle size decreased with decreasing molecular weight. The obtained results show that 1:100 microspheres have the highest drug-loading and encapsulation efficiencies, the drug-loaded microspheres have no burst release within 24 h, and the release quantity reaches more than 20%. After 30 days of release, the release amounts of 1:10, 1:20, 1:40, 1:60, and 1:100 drug-loaded microspheres were 64.80 ± 0.29%, 54.43 ± 0.54%, 44.60 ± 0.43%, 42.53 ± 0.40% and 69.73 ± 0.45%, respectively, and the release amount of 1:100 was the highest.

19.
Inorg Chem ; 61(30): 11757-11765, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863066

RESUMEN

Herein, we introduce a strategy to develop a kind of unprecedented microcatalyst, which owns self-stirring and catalytic performance based on pneumatic printing and magnetic field induction technology. A spindle-shaped microcatalyst based on metal-organic frameworks (MOFs) with a certain aspect ratio and size can be obtained by tuning the printing parameters and the intensity of the magnetic field. One nozzle can print 18 000 microcatalysts per hour, which provides a prerequisite for the realization of large-scale production in the industrial field. Furthermore, this strategy can be widely applied to a variety of other heterogeneous catalysts, such as mesoporous SiO2, zeolite, metallic oxide, and so on. To demonstrate the superiority of the printed catalyst, the series of printed microcatalysts were evaluated by various catalytic reactions including liquid-phase hydrogenation, microdroplet dye-fading, and photocatalytic degradation in microreactor, all of which exhibited excellent catalytic performance.

20.
Int J Biol Macromol ; 217: 922-930, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908674

RESUMEN

This study was performed to promote the clinical application of Panax notoginseng saponins (PNS), which present anti-inflammatory and antitumor activities, and provided insights for the preparation of controlled-release dosage forms of traditional Chinese medicine. A series of drug-loaded microspheres with degradable amphiphilic polymer material polyethylene glycol monomethyl ether-polylactic acid (mPEG-PLA) as the carrier was synthesized. The degradation, sustained-release behavior, and biocompatibility of the drug-loaded microspheres were studied through in vitro release, degradation, hemolysis, anticoagulation, and cytotoxicity experiments. The pharmacological activities of the microspheres were studied through anti-inflammatory and antitumor experiments. The results showed that the best carrier material was mPEG2k-PLA (1:9), with an average particle size of 3.47 ± 0.35 µm, a drug load of 5.50 ± 0.28 %, and an encapsulation efficiency of 38.52 ± 1.93 %. This material could be released stably for approximately 24 days and degrade in approximately 60 days. Moreover, the microspheres had good biocompatibility and anti-inflammatory and antitumor activities.


Asunto(s)
Panax notoginseng , Saponinas , Antiinflamatorios/farmacología , Microesferas , Poliésteres , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...