Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Cell Signal ; : 111232, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763183

RESUMEN

Aging affects lipid metabolism and can cause obesity as it is closely related to the disorder of many lipogenic regulatory factors. LncRNAs have been recognized as pivotal regulators across diverse biological processes, but their effects on lipogenesis in aging remain to be further studied. In this work, using RNA sequencing (RNA-Seq), we found that the expression of lncRNA AI504432 was significantly upregulated in the eWAT (epididymal white adipose tissue) of aging mice, and the knockdown of AI504432 notably reduced the expression of several adipogenic genes (e.g., Cebp/α, Srebp-1c, Fasn, Acaca, and Scd1) in senescent adipocytes. The bioinformatics investigation revealed that AI504432 possessed a binding site for miR-1a-3p, and the discovery was verified by the luciferase reporter assay. The expression of Fasn was increased upon the inhibition of miR-1a-3p but restored upon the simultaneous silencing of AI504432. Taken together, our results suggested that AI504432 controlled lipogenesis through the miR-1a-3p/Fasn signaling pathway. The findings may inspire new therapeutic approaches to target imbalanced lipid homeostasis due to aging.

2.
Rev Sci Instrum ; 95(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727574

RESUMEN

A pulsed power supply with a short rise time and high repetition frequency is favorable to driving diffusive plasma for strongly oxidizing radical (O3, OH) generation and increasing the system's energy efficiency. In this paper, a 10-stage solid-state linear transformer driver (LTD) with a nanosecond rise time is developed to drive plasma for wastewater treatment. To decrease the rise time, a control system with low jitter is developed to improve the synchronization of pulses using an optocoupler isolation chip. A 10-stage LTD with a rise time of 6.2 ns is realized in the case that the rise time of the single-stage LTD is 5.4 ns. The results show that the LTD can generate pulses on a 300 Ω resistive load with a repetition frequency of 10 kHz, an amplitude of 8.80 kV, an overshoot less than 3.97%, and a reverse overshoot less than 4.82%. The rise time (6.2-33.0 ns), the pulse width (35.9-200.0 ns), and the fall time (10.5-27.6 ns) can be adjusted flexibly and independently by controlling the drive signals of metal oxide semiconductor field effect transistors. The pulsed generator is utilized to drive plasma in the needle-water electrode system. The preliminary experimental results show that the plasma includes abundant oxygen atoms and hydroxyl radicals with high activity, and it is suitable for wastewater treatment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38773701

RESUMEN

Poor interfacial quality and low refractive index contrast (Δn) are critical challenges for the development of high-performance one-dimensional photonic crystals (1DPhCs) via solution methods that impede their optical efficiency. Herein, we introduce an innovative approach by hybridizing hollow SiO2 with poly(vinyl alcohol), referred to as PHS, followed by alternate assembly with TiO2 via spin-coating, achieving a 1DPhC with Δn = 0.76 at the wavelength of 550 nm. This method circumvents the need for high-temperature treatment and complex curing conditions, resulting in a 1DPhC with superior interfacial and optical characteristics. By adjusting the thickness of the PHS layers, we can finely tune the reflectance spectrum, attaining over 99% reflectance at the photonic band gap. Furthermore, 1DPhC demonstrates excellent adhesion to polycarbonate substrates and retains its optimal optical performance even after rigorous environmental testing, including hygrothermal cycles, exposure to hot water, friction, and solvent sonication. This research paves the way for the facile fabrication of high-performance 1DPhCs under mild conditions, offering new perspectives for photonic material processing.

4.
Mini Rev Med Chem ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716553

RESUMEN

The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.

5.
Front Immunol ; 15: 1371584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694509

RESUMEN

Backgrounds: Extracellular matrix (ECM) is an important component of tumor microenvironment, and its abnormal expression promotes tumor formation, progression and metastasis. Methods: Weighted gene co-expression network analysis (WGCNA) was used to identify ECM-related hub genes based on The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) data. COAD clinical samples were used to verify the expression of potential biomarkers in tumor tissues, and siRNA was used to explore the role of potential biomarkers in cell proliferation and epithelial-mesenchymal transition (EMT). Results: Three potential biomarkers (LEP, NGF and PCOLCE2) related to prognosis of COAD patients were identified and used to construct ERGPI. Immunohistochemical analysis of clinical samples showed that the three potential biomarkers were highly expressed in tumor tissues of COAD patients. Knockdown of LEP, NGF or PCOLCE2 inhibited COAD cell proliferation and EMT. Dictamnine inhibited tumor cell growth by binding to these three potential biomarkers based on molecular docking and transplanted tumor model. Conclusion: The three biomarkers can provide new ideas for the diagnosis and targeted therapy of COAD patients.


Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Neoplasias del Colon , Biología Computacional , Transición Epitelial-Mesenquimal , Matriz Extracelular , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Biología Computacional/métodos , Matriz Extracelular/metabolismo , Animales , Transición Epitelial-Mesenquimal/genética , Ratones , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Pronóstico , Microambiente Tumoral , Simulación del Acoplamiento Molecular , Perfilación de la Expresión Génica , Masculino , Redes Reguladoras de Genes
6.
Biomed Pharmacother ; 175: 116737, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38749176

RESUMEN

Antisense oligonucleotide (ASO) has emerged as a promising therapeutic approach for treating central nervous system (CNS) disorders by modulating gene expression with high selectivity and specificity. However, the poor permeability of ASO across the blood-brain barrier (BBB) diminishes its therapeutic success. Here, we designed and synthesized a series of BBB-penetrating peptides (BPP) derived from either the receptor-binding domain of apolipoprotein E (ApoE) or a transferrin receptor-binding peptide (THR). The BPPs were conjugated to phosphorodiamidate morpholino oligomers (PMO) that are chemically analogous to the 2'-O-(2-methoxyethyl) (MOE)-modified ASO approved by the FDA for treating spinal muscular atrophy (SMA). The BPP-PMO conjugates significantly increased the level of full-length SMN2 in the patient-derived SMA fibroblasts in a concentration-dependent manner with minimal to no toxicity. Furthermore, the systemic administration of the most potent BPP-PMO conjugates significantly increased the expression of full-length SMN2 in the brain and spinal cord of SMN2 transgenic adult mice. Notably, BPP8-PMO conjugate showed a 1.25-fold increase in the expression of full-length functional SMN2 in the brain. Fluorescence imaging studies confirmed that 78% of the fluorescently (Cy7)-labelled BPP8-PMO reached brain parenchyma, with 11% uptake in neuronal cells. Additionally, the BPP-PMO conjugates containing retro-inverso (RI) D-BPPs were found to possess extended half-lives compared to their L-counterparts, indicating increased stability against protease degradation while preserving the bioactivity. This delivery platform based on BPP enhances the CNS bioavailability of PMO targeting the SMN2 gene, paving the way for the development of systemically administered neurotherapeutics for CNS disorders.

7.
Technol Cancer Res Treat ; 23: 15330338241246651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613344

RESUMEN

OBJECTIVE: To investigate the predictive value of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) for the efficacy and prognosis of programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors in driver-gene-negative advanced non-small-cell lung cancer (NSCLC). METHODS: A retrospective analysis of 107 advanced NSCLC patients without gene mutations who received PD-1/PD-L1 inhibitors in our hospital from January 2020 to June 2022 was performed. NLR and PLR were collected before PD-1/PD-L1 inhibitors, the optimal cut-off values of NLR and PLR were determined according to the receiver operating characteristic (ROC) curve, and the effects of NLR and PLR on the efficacy of PD-1/PD-L1 inhibitors in advanced NSCLC patients were analyzed. RESULTS: A total of 107 patients were included in this study. Receiver operating characteristic analysis showed that the optimal cut-off values of NLR and PLR were 3.825, 179, respectively. Kaplan-Meier curve showed that low baseline levels NLR and PLR were associated with an improvement in both progression-free survival (PFS) (P < .001, < .001, respectively) and overall survival (OS) (P = .009, .006, respectively). In first-line treatment and non-first-line treatment, low baseline levels NLR and PLR were associated with an improvement in PFS. In multivariate analysis, low baseline NLR and PLR showed a strong association with both better PFS (P = .011, .027, respectively) and longer OS (P = .042, .039, respectively). CONCLUSION: Low baseline NLR and PLR levels are significantly associated with better response in advanced NSCLC patients treated with PD-1/PD-L1 inhibitors, which may be indicators to predict the efficacy of immunotherapy in advanced NSCLC with driver-gene-negative.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Estudios de Cohortes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos , Neutrófilos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Linfocitos
8.
Front Physiol ; 15: 1386413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645688

RESUMEN

Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.

9.
Per Med ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682747

RESUMEN

Background: This study investigated the influence of ADRB1 gene rs1801253 polymorphism on the treatment response of ticagrelor and aspirin in patients with acute coronary syndrome (ACS). Methods: Genetic typing was detected by Sanger sequencing. Platelet inhibition was assessed using thromboelastography. Kaplan-Meier and Cox regression were applied for prognosis analysis. Results: Out of 200 participants, 94 cases with rs1801253-CC genotype and 106 cases with CG+GG genotype were found. There was no significant difference between the rs1801253-CC and CG+GG groups in the number of ST-segment elevation myocardial infarction, non-ST-segment elevation myocardial infarction and unstable angina patients. There was no statistical difference in the basic data of patients in the two groups in terms of age, sex, medical history and medicine use in the dominant model. The rs1801253-CC genotype was a risk prognostic factor for ACS patients based on the Cox regression analysis results. Conclusion: Detecting ADRB1 polymorphism is crucial for ACS patients undergoing treatment with ticagrelor and aspirin.

10.
Brain Commun ; 6(2): fcae096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562310

RESUMEN

Aging and Alzheimer's disease are associated with chronic elevations in neuronal calcium influx via L-type calcium channels. The hippocampus, a primary memory encoding structure in the brain, is more vulnerable to calcium dysregulation in Alzheimer's disease. Recent research has suggested a link between L-type calcium channels and tau hyperphosphorylation. However, the precise mechanism of L-type calcium channel-mediated tau toxicity is not understood. In this study, we seeded a human tau pseudophosphorylated at 14 amino acid sites in rat hippocampal cornu ammonis 1 region to mimic soluble pretangle tau. Impaired spatial learning was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats as early as 1-3 months and worsened at 9-10 months post-infusion. Rats infused with wild-type human tau exhibited milder behavioural deficiency only at 9-10 months post-infusion. No tangles or plaques were observed in all time points examined in both human tau pseudophosphorylated at 14 amino acid sites and human tau-infused brains. However, human tau pseudophosphorylated at 14 amino acid sites-infused hippocampus exhibited a higher amount of tau phosphorylation at S262 and S356 than the human tau-infused rats at 3 months post-infusion, paralleling the behavioural deficiency observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Neuroinflammation indexed by increased Iba1 in the cornu ammonis 1 was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 but not 9 months post-infusion. Spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 months post-infusion was paralleled by decreased neuronal excitability, impaired NMDA receptor-dependent long-term potentiation and augmented L-type calcium channel-dependent long-term potentiation at the cornu ammonis 1 synapses. L-type calcium channel expression was elevated in the soma of the cornu ammonis 1 neurons in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Chronic L-type calcium channel blockade with nimodipine injections for 6 weeks normalized neuronal excitability and synaptic plasticity and rescued spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats. The early onset of L-type calcium channel-mediated pretangle tau pathology and rectification by nimodipine in our model have significant implications for preclinical Alzheimer's disease prevention and intervention.

11.
Front Mol Neurosci ; 17: 1355140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550251

RESUMEN

Introduction: Cumulative evidence suggests that sensory cortices interact with the basolateral amygdala (BLA) defense circuitry to mediate threat conditioning, memory retrieval, and extinction learning. The olfactory piriform cortex (PC) has been posited as a critical site for olfactory associative memory. Recently, we have shown that N-methyl-D-aspartate receptor (NMDAR)-dependent plasticity in the PC critically underpins olfactory threat extinction. Aging-associated impairment of olfactory threat extinction is related to the hypofunction of NMDARs in the PC. Methods: In this study, we investigated activation of neuronal cFos and epigenetic marks in the BLA and PC using immunohistochemistry, following olfactory threat conditioning and extinction learning in rats. Results: We found highly correlated cFos activation between the posterior PC (pPC) and BLA. cFos was correlated with the degree of behavioral freezing in the pPC in both adult and aged rats, and in the BLA only in adult rats. Markers of DNA methylation 5 mC and histone acetylation H3K9/K14ac, H3K27ac, and H4ac exhibited distinct training-, region-, and age-dependent patterns of activation. Strong correlations of epigenetic marks between the BLA and pPC in adult rats were found to be a general feature. Conversely, aged rats only exhibited correlations of H3 acetylations between the two structures. Histone acetylation varied as a function of aging, revealed by a reduction of H3K9/K14ac and an increase of H4ac in aged brains at basal condition and following threat conditioning. Discussion: These findings underscore the coordinated role of PC and BLA in olfactory associative memory storage and extinction, with implications for understanding aging related cognitive decline.

12.
Front Neural Circuits ; 18: 1371130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476709

RESUMEN

Hippocampal networks required for associative memory formation are involved in cue- and context-dependent threat conditioning. The hippocampus is functionally heterogeneous at its dorsal and ventral poles, and recent investigations have focused on the specific roles required from each sub-region for associative conditioning. Cumulative evidence suggests that contextual and emotional information is processed by the dorsal and ventral hippocampus, respectively. However, it is not well understood how these two divisions engage in threat conditioning with cues of different sensory modalities. Here, we compare the involvement of the dorsal and ventral hippocampus in two types of threat conditioning: olfactory and auditory. Our results suggest that the dorsal hippocampus encodes contextual information and is activated upon recall of an olfactory threat memory only if contextual cues are relevant to the threat. Overnight habituation to the context eliminates dorsal hippocampal activation, implying that this area does not directly support cue-dependent threat conditioning. The ventral hippocampus is activated upon recall of olfactory, but not auditory, threat memory regardless of habituation duration. Concurrent activation of the piriform cortex is consistent with its direct connection with the ventral hippocampus. Together, our study suggests a unique role of the ventral hippocampus in olfactory threat conditioning.


Asunto(s)
Señales (Psicología) , Hipocampo , Hipocampo/fisiología , Olfato
13.
J Biomater Sci Polym Ed ; 35(8): 1236-1257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460114

RESUMEN

Diabetic wounds are prone to develop chronic wounds due to bacterial infection and persistent inflammatory response. However, traditional dressings are monofunctional, lack bioactive substances, have limited bacterial inhibition as well as difficulties in adhesion and retention. These limit the therapeutic efficacy of traditional dressings on diabetic wounds. Therefore, finding and developing efficient and safe wound dressings is currently an urgent clinical need. In this study, an antimicrobial gel loaded with silver nanoparticles (AgNPs) (referred to as AgNPs@QAC-CBM) was prepared by crosslinking quaternary ammonium chitosan (QAC) with carbomer (CBM) as a gel matrix. AgNPs@QAC-CBM exhibited a reticulated structure, strong adhesion, good stability, and remarkable bactericidal properties, killing 99.9% of Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa within 1 min. Furthermore, AgNPs@QAC-CBM improved the wound microenvironment and accelerated wound healing in diabetic mice by promoting tissue production and collagen deposition, inducing M2 macrophages, reducing pro-inflammatory factor secretion and increasing anti-inflammatory factor levels. Moreover, AgNPs@QAC-CBM was proven to be safe for use through skin irritation and cytotoxicity tests, as they did not cause any irritation or toxicity. To summarize, AgNPs@QAC-CBM showed promising potential in enhancing the diabetic wound healing process.


Asunto(s)
Antiinflamatorios , Diabetes Mellitus Experimental , Nanopartículas del Metal , Plata , Cicatrización de Heridas , Plata/química , Plata/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Nanopartículas del Metal/química , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Quitosano/química , Quitosano/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Geles/química , Pseudomonas aeruginosa/efectos de los fármacos , Candida albicans/efectos de los fármacos , Masculino , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Vendajes
14.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38450619

RESUMEN

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Ratones , Animales , Gelatina/farmacología , Gelatina/química , Microesferas , Metaloproteinasa 9 de la Matriz/farmacología , Metaloproteinasa 9 de la Matriz/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Inflamación , Macrófagos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38502619

RESUMEN

Photorealistic stylization of 3D scenes aims to generate photorealistic images from arbitrary novel views according to a given style image, while ensuring consistency when rendering video from different viewpoints. Some existing stylization methods using neural radiance fields can effectively predict stylized scenes by combining the features of the style image with multi-view images to train 3D scenes. However, these methods generate novel view images that contain undesirable artifacts. In addition, they cannot achieve universal photorealistic stylization for a 3D scene. Therefore, a stylization image needs to retrain a 3D scene representation network based on a neural radiation field. We propose a novel photorealistic 3D scene stylization transfer framework to address these issues. It can realize photorealistic 3D scene style transfer with a 2D style image for novel view video rendering. We first pre-trained a 2D photorealistic style transfer network, which can satisfy the photorealistic style transfer between any content image and style image. Then, we use voxel features to optimize a 3D scene and obtain the geometric representation of the scene. Finally, we jointly optimize a hypernetwork to realize the photorealistic style transfer of arbitrary style images. In the transfer stage, we use a pre-trained 2D photorealistic network to constrain the photorealistic style of different views and different style images in the 3D scene. The experimental results show that our method not only realizes the 3D photorealistic style transfer of arbitrary style images, but also outperforms the existing methods in terms of visual quality and consistency. Project page:https://semchan.github.io/UPST_NeRF/.

16.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475244

RESUMEN

Roads are the fundamental elements of transportation, connecting cities and rural areas, as well as people's lives and work. They play a significant role in various areas such as map updates, economic development, tourism, and disaster management. The automatic extraction of road features from high-resolution remote sensing images has always been a hot and challenging topic in the field of remote sensing, and deep learning network models are widely used to extract roads from remote sensing images in recent years. In light of this, this paper systematically reviews and summarizes the deep-learning-based techniques for automatic road extraction from high-resolution remote sensing images. It reviews the application of deep learning network models in road extraction tasks and classifies these models into fully supervised learning, semi-supervised learning, and weakly supervised learning based on their use of labels. Finally, a summary and outlook of the current development of deep learning techniques in road extraction are provided.

17.
Adv Sci (Weinh) ; 11(17): e2308548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400593

RESUMEN

High-performance and air-stable single-molecule magnets (SMMs) can offer great convenience for the fabrication of information storage devices. However, the controversial requisition of high stability and magnetic axiality is hard to balance for lanthanide-based SMMs. Here, a family of dysprosium(III) crown ether complexes possessing hexagonal-bipyramidal (pseudo-D6h symmetry) local coordination geometry with tunable air stability and effective energy barrier for magnetization reversal (Ueff) are shown. The three complexes share the common formula of [Dy(18-C-6)L2][I3] (18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; L = I, 1; L = OtBu 2 and L = 1-AdO 3). 1 is highly unstable in the air. 2 can survive in the air for a few minutes, while 3 remains unchanged in the air for more than 1 week. This is roughly in accordance with the percentage of buried volumes of the axial ligands. More strikingly, 2 and 3 show progressive enhancement of Ueff and 3 exhibits a record high Ueff of 2427(19) K, which significantly contributes to the 100 s blocking temperature up to 11 K for Yttrium-diluted sample, setting a new benchmark for solid-state air-stable SMMs.

18.
Toxicol Appl Pharmacol ; 484: 116845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331104

RESUMEN

Liver fibrosis could progress to liver cirrhosis with several contributing factors, one being iron overload which triggers ferroptosis, a form of regulated cell death. Rifaximin, a non-absorbable antibiotic, has shown promise in mitigating fibrosis, primarily by modulating gut microbiota. This study investigated the effects and mechanisms of rifaximin on iron overload-related hepatic fibrosis and ferroptosis. In an iron overload-induced liver fibrosis model in mice and in ferric ammonium citrate (FAC)-stimulated primary hepatocytes, treatment with rifaximin showed significant therapeutic effects. Specifically, it ameliorated the processes of ferroptosis triggered by iron overload, reduced liver injury, and alleviated fibrosis. This was demonstrated by decreased iron accumulation in the liver, improved liver function, and reduced fibrotic area and collagen deposition. Rifaximin also modulated key proteins related to iron homeostasis and ferroptosis, including reduced expression of TFR1, a protein facilitating cellular iron uptake, and increased expression of Fpn and FTH, proteins involved in iron export and storage. In the context of oxidative stress, rifaximin treatment led to a decrease in lipid peroxidation, evidenced by reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and an increase in the reduced glutathione (GSH) and decrease in oxidized glutathione (GSSG). Notably, rifaximin's potential functions were associated with the TGF-ß pathway, evidenced by suppressed Tgfb1 protein levels and ratios of phosphorylated to total Smad2 and Smad3, whereas increased Smad7 phosphorylation. These findings indicate rifaximin's therapeutic potential in managing liver fibrosis by modulating the TGF-ß pathway and reducing iron overload-induced damage. Further research is required to confirm these results and explore their clinical implications.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Animales , Ratones , Rifaximina/efectos adversos , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Cirrosis Hepática/metabolismo , Hierro/metabolismo , Factor de Crecimiento Transformador beta
19.
Artículo en Inglés | MEDLINE | ID: mdl-38412501

RESUMEN

Recent scientific studies have highlighted the importance of long-chain noncoding RNAs (lncRNAs) in a variety of metabolic diseases, but the specific functions and mechanisms of lncRNAs in aberrant lipid synthesis associated with aging are unknown. In this work, we inspected the effects of lncRNAs on the lipid metabolism in aging mice, as substantial evidence suggests that aging disturbs lipid metabolism. The results revealed that the expression of lncRNA Gm15232 was significantly elevated in the epididymal white adipose tissue of aging mice compared to adult mice. This upregulation of Gm15232 functioned as a competitive endogenous RNA by inhibiting the expression of miR-192-3p, and the ensuing downregulation of miR-192-3p increased the expression of the glucocorticoid receptor gene, which ultimately stimulated fat synthesis. The upregulation of Gm15232 thus increased lipogenesis through this mechanism. This study reveals a potential target for the treatment of age-related abnormalities of lipid metabolism.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , Lipogénesis/genética , Regulación hacia Arriba , Regulación hacia Abajo
20.
Sci Rep ; 14(1): 4593, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409267

RESUMEN

In sulphur-coal symbiotic coal seams, after the mining of sulphide iron ore, when the coal resources are mined, the mine water accumulated in the roadway mining area will have a certain impact on the stability of the surrounding rock of the coal seam roadway. Taking the floor sandstone of sulfur coal symbiotic coal seam as the research object, the roof fissure water with pH values of 7.48, 4.81 and 2.62 was used as the experimental solution. 10 experimental schemes were designed to measure the compressive strength of the samples under the action of AMD, and the hydrochemical analysis of AMD was conducted. The pore structures of the samples before and after the action of AMD were analyzed. Based on the hydrochemistry and pore structure, the deterioration mechanism of compressive strength of the coal seam floor sandstone under the action of AMD was explained. The results indicated that the compressive strength of the samples decreased with the increasing action time of AMD. The compressive strength decreased with the increment of the porosity. The concentration of H+ ion in AMD was relatively small. Na2O in albite dissolved and reacted with water, leading to an increase in the concentration of Na+ ion. Soluble substances such as MgCl2 and CaSO4 in the pore structure dissolved, leading to an increase in the concentration of Ca2+ and Mg2+ ions. The dissolution of soluble substances and the physical-chemical reactions between solutions and minerals were the essential causes of the continuous deterioration of the compressive strength of the coal seam floor sandstone. The results of this study can provide a theoretical basis for the deterioration of the mechanical properties of the peripheral rock in the roadway of the sulphur coal seam, and can also provide a certain engineering reference for the sulphur coal seam roadway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...