Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 256: 121645, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653093

RESUMEN

Mercury contamination is a global concern, and the degradation and detoxification of methylmercury have gained significant attention due to its neurotoxicity and biomagnification within the food chain. However, the currently known pathways of abiotic demethylation are limited to light-induced photodegradation process and little is known about light-independent abiotic demethylation of methylmercury. In this study, we reported a novel abiotic pathway for the degradation of methylmercury through the oxidation of both mineral structural iron(II) and surface-adsorbed iron(II) in the absence of light. Our findings reveal that methylmercury can be oxidatively degraded by reactive oxygen species, specifically hydroxyl and superoxide radicals, which are generated from the oxidation of iron(II) minerals under dark conditions. Surprisingly, Hg(0) trapping experiments demonstrated that inorganic Hg(II) resulting from the oxidative degradation of methylmercury was rapidly reduced to gaseous Hg(0) by iron(II) minerals. The demethylation of methylmercury, coupled with the generation of Hg(0), suggests a potential natural attenuation process for methylmercury. Our results highlight the underappreciated roles of iron(II) minerals in the abiotic degradation of methylmercury and the release of gaseous Hg(0) into the atmosphere.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Minerales , Oxidación-Reducción , Compuestos de Metilmercurio/química , Mercurio/química , Minerales/química , Hierro/química , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo
2.
J Hazard Mater ; 459: 132144, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37517234

RESUMEN

Electron shuttles (ESs) and Fe-bearing clay minerals are commonly found in subsurface environments and have shown potential in enhancing the bioreduction of Cr(VI). However, the synergistic effect of ESs at different redox potentials and Fe-bearing clay minerals on Cr(VI) bioreduction, as well as the fundamental principles governing this process, remain unclear. In our study, we investigated the role of ESs and Fe(III) in Cr(VI) bioreduction. We found that the acceleration of ESs and Fe(III) are crucial factors in this process. Interestingly, the promotion of ESs on Cr(VI) and Fe(III) showed opposite trends. Electrochemical methods confirmed the limited steps are the extent of reduced ESs and the redox potential difference between ESs and Fe(III), separately. Furthermore, we investigated the combined effect of ESs and NAu-2 on Cr(VI) bioreduction. Our results revealed two segments: in the first segment, the ES (5-HNQ) and NAu-2 did not synergistically enhance Cr(VI) reduction. However, in the second segment, ESs and NAu-2 demonstrated a synergistic effect, significantly increasing Cr(VI) reduction by MR-1. These bioreduction processes all follow linear free energy relationships (LFERs). Overall, our study highlights the fundamental principles governing multivariate systems and presents a promising approach for the remediation of Cr(VI)-contaminated sites.


Asunto(s)
Hierro , Shewanella , Arcilla , Electrones , Oxidación-Reducción , Minerales , Cromo , Termodinámica
3.
J Hazard Mater ; 450: 131074, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848841

RESUMEN

Methylmercury (MeHg) uptake by demethylating bacteria and inorganic divalent mercury [Hg(II)] uptake by methylating bacteria have been extensively investigated because uptake is the initial step of the intracellular Hg transformation. However, MeHg and Hg(II) uptake by non-methylating/non-demethylating bacteria is overlooked, which may play an important role in the biogeochemical cycling of mercury concerning their ubiquitous presence in the environment. Here we report that Shewanella oneidensis MR-1, a model strain of non-methylating/non-demethylating bacteria, can take up and immobilize MeHg and Hg(II) rapidly without intracellular transformation. In addition, when taken up into MR-1 cells, the intracellular MeHg and Hg(II) were proved to be hardly exported over time. In contrast, adsorbed mercury on cell surface was observed to be easily desorbed or remobilized. Moreover, inactivated MR-1 cells (starved and CCCP-treated) were still capable of taking up nonnegligible amounts of MeHg and Hg(II) over an extended period in the absence and presence of cysteine, suggesting that active metabolism may be not required for both MeHg and Hg(II) uptake. Our results provide an improved understanding of divalent mercury uptake by non-methylating/non-demethylating bacteria and highlight the possible broader involvement of these bacteria in mercury cycling in natural environments.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Bacterias/metabolismo , Cisteína/metabolismo , Transporte Biológico
4.
Environ Sci Technol ; 56(18): 13327-13337, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35973206

RESUMEN

Groundwater containing naturally occurring uranium is a conventional drinking water source in many countries. Removal of low concentrations of uranium complexes in groundwater is a challenging task. Here, we demonstrated that the TiO2 nanotube arrays/Ti (TNTAs/Ti) mesh electrode could break through the concentration limit and efficiently remove low concentrations of uranium complexes from both simulated and real groundwater. U(VI) complexes in groundwater were electro-reduced to UO2 and deposited on the TNTAs/Ti mesh electrode surface. The adsorption rate and electron transfer rate of the anatase TNTAs/Ti mesh electrode were twice that of the rutile TNTAs/Ti mesh electrode. Therefore, the anatase TNTAs/Ti mesh electrode exhibited excellent electrocatalytic activity toward the electrochemical removal of U(VI), which could work at a higher potential and significantly reduce the energy consumption of U(VI) removal. The U(VI) adsorption capacity on the anatase TNTAs/Ti mesh electrode was limited due to the low U(VI) concentration. However, the anatase TNTAs/Ti mesh electrode displayed a huge U(VI) removal capacity using the electroreduction method, where adsorption and reduction of U(VI) were mutually promoted and induced continuous accumulation of UO2 on the electrode. The accumulated UO2 can be easily recovered in dilute HNO3, and the electrode can be used repeatedly.

5.
J Hazard Mater ; 436: 129309, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739803

RESUMEN

The discharge of pollutants into the Yellow River has been strictly controlled since 2013 due to the severe pollution. Thus, the overall water quality of the Yellow River has been becoming better year by year. However, the contamination status and source identification of heavy metals from the entire Yellow River remains unclear. Our results demonstrated that heavy metal contents in sediments showed little changes over time, whereas significant alleviation was observed in surface water compared to the reported metal concentrations before 2013. No heavy metal contamination was observed in surface water, and the distribution of all heavy metals in surface water fluctuated along the mainstream without a significant spatial difference. Heavy metals in sediments were assessed as low to moderate contamination degree. The majority of heavy metal concentrations were higher in the upstream and midstream than that in the downstream. Besides anthropogenic activities, the natural contribution from soil erosion of the Loess Plateau was also an important source of heavy metals in the Yellow River sediments. Our results highlight that control of anthropogenic activities and soil erosion of the Loess Plateau are necessary measures to reduce heavy metals in the Yellow River.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 29(29): 44874-44882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35138538

RESUMEN

Iron-bearing clay minerals and arsenic commonly coexist in soils and sediments. Redox oscillation from anoxic to oxic conditions can result in structural Fe(II) oxidation in clay minerals. However, the role of structural Fe(II) oxidation in clay minerals on arsenic immobilization is still unclear. In this study, we found that oxidation of structural Fe(II) in bioreduced clay mineral nontronite (NAu-2) triggered As(III) adsorption onto NAu-2. As(III) was adsorbed onto NAu-2 through ligand exchange with hydroxyl groups which were generated by the oxidation of structural Fe(II) in NAu-2. In addition, oxidation of structural Fe(II) led to the oxidation of As(III) to As(V), which further enhanced the adsorption of dissolved As(III) on NAu-2. Therefore, the adsorption capacity of As(III) onto oxidized NAu-2 was 1.6 times higher than that of native NAu-2. Oxidation of structural Fe(II) was a two-stage process that proceeded from exterior sites to interior sites, and the immobilization and oxidation of As(III) occurred predominantly at the rapid exterior structural Fe(II) oxidation stage. Our findings highlight that the oxidation of structural Fe(II) in iron-bearing clay minerals may play an important role in arsenic immobilization and transformation in the subsurface environment.


Asunto(s)
Arsénico , Hierro , Arcilla , Compuestos Férricos/química , Compuestos Ferrosos , Hierro/química , Minerales/química , Oxidación-Reducción
7.
Sci Total Environ ; 763: 144613, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33383508

RESUMEN

Clay minerals are an important host for arsenic in many arsenic-affected areas. The role of bioreduction of structural Fe(III) in clay minerals in the mobilization of arsenic from clay minerals, however, still remains unclear. In this study, Fe(III) reducing bacterium, As(V) reducing bacterium, and Fe(III)-As(V) reducing bacterium were employed to investigate the possible bioreduction pathways for arsenic release from Nontronite NAu-2. Results demonstrated that microbial reduction controlled arsenic mobilization from NAu-2 through Fe(III), As(V), and simultaneous Fe(III)-As(V) reduction pathways. Although the bioreduction of structural Fe(III) led to a negligible dissolution of NAu-2, it triggered a significant release of arsenic from NAu-2. The bioreduction of tetrahedral Fe(III) initiated the release of As(V), and the further bioreduction of octahedral Fe(III) induced the release of As(III) in NAu-2. In addition, bioreduction of As(V) resulted in the desorption and transformation of As(V) from NAu-2. Simultaneous bioreduction of Fe(III) and As(V) led to an almost complete release of As(V) from NAu-2. These findings suggest that simultaneous Fe(III)-As(V) reduction was the dominant pathway governing As(V) release from NAu-2, while structural Fe(III) reduction controlled As(III) release from NAu-2. Therefore, the bioreduction of iron-bearing clay minerals has a great potential for arsenic mobilization in the subsurface environment.


Asunto(s)
Arsénico , Hierro , Arseniatos , Arcilla , Compuestos Férricos , Minerales , Oxidación-Reducción
8.
Environ Technol ; 39(14): 1765-1775, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28566041

RESUMEN

The performance of three pumice-woodchip packed stormwater biofilter (PWSWBF) systems with three packing volume ratios of pumice to woodchip (1:2, 1:1 and 2:1) were compared. The results show that the PWSWBF system packed with a lower percentage of woodchip attained a higher removal efficiency of TCOD, TN, NH4-N and TP, whereas all three systems completely removed nitrate. The highest removal efficiencies for TCOD, TN, NH4-N, NO3-N and TP were 95%, 70%, 86%, 100% and 100%, respectively. In the biofilter with a lower percentage of woodchip, the pollutants that get removed through aerobic biological processes were removed more significantly, which is attributed to less oxygen depletion via woodchip decomposition, which is common under wet conditions. Nitrate was significantly removed via denitrification in all three systems, indicating that the woodchip that occupied one-third of the main media was sufficient for denitrification, and also that the oxygen condition inside the column was proper for denitrification to proceed. A smaller amount of woodchip as the packing material also mitigated the adverse effect of the release of organics from the media during the initial period. In addition, the system showed very good buffering capacity, in that the outflow pH was constant within the optimal range for microorganism growth.


Asunto(s)
Desnitrificación , Silicatos , Purificación del Agua , Filtración , Nitratos , Oxígeno , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...