Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 22(3): 1257-1264, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34965148

RESUMEN

Se-based nanoalloys as an emerging class of metal chalcogenide with tunable crystalline structure, component distribution, and electronic structure have attracted considerable interest in renewable energy conversion and utilization. In this Letter, we report a series of nanosized M-Se catalysts (M = Cu, Ni, Co) as prepared from laser ablation method and screen their electrocatalytic performance for onsite H2O2 generation from selective oxygen reduction reaction (ORR) in alkaline media. A flexible control on 2e-/4e- ORR pathway has been achieved by engineering the alloying component. Moreover, through a feedback loop between theory and experiment an optimized scaling relationship between oxygenated ORR intermediates has been discovered on cubic Cu7.2Se4 nanocrystals, that is, the ensemble effect of isolated Cu component destabilizes O* binding while the ligand effect of Se to Cu fine-tunes the binding strength of OOH*, leading to a superb H2O2 selectivity above 90% over a wide potential window even after 1400 potential cycles.

2.
Adv Mater ; 31(49): e1906051, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31621962

RESUMEN

Selective hydrogenation of quinoline and its derivatives is an important means to produce corresponding 1,2,3,4-tetrahydroquinolines for a wide spectrum of applications. A facile and efficient "laser irradiation in liquid" technique to liberate the inaccessible highly dispersed CoNx active sites confined inside N-doped carbon nanotubes is demonstrated. The liberated CoNx sites possess generic catalytic activities toward selective hydrogenation of quinoline and its hydroxyl, methyl, and halogen substituted derivatives into corresponding 1,2,3,4-tetrahydroquinolines with almost 100% conversion efficiency and selectivity. This laser irradiation treatment approach should be widely applicable to unlock the catalytic powers of inaccessible catalytic active sites confined by other materials.

3.
Phys Chem Chem Phys ; 18(26): 17440-5, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27302195

RESUMEN

We report the coexistence of resistance switching (RS) behavior and the negative differential resistance (NDR) phenomenon in the α-Fe2O3 nanorod film grown in situ on a fluorine-doped tin oxide glass substrate. The reversible switching of the low- and high-resistance states (LRS and HRS, respectively) of the film device can be excited simply by applying bias voltage. The switching from the HRS to the LRS was initiated in the negative bias region, whereas the NDR process followed by the reversion of the HRS occurred in the positive bias region. With the increase in compliant current (CC), the carrier conduction models of the LRS and the HRS both changed and the current-voltage (I-V) relationships in the NDR region were seriously affected by the thermal process according to the level of applied CC. The co-existence of RS and NDR was possibly caused by defects during migration, such as oxygen vacancies and interstitial iron ions, which were formed in the α-Fe2O3 nanorod film. This work provided information on the ongoing effort toward developing novel electrical features of advanced transition metal oxide devices.

4.
ACS Appl Mater Interfaces ; 7(41): 22935-40, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26435201

RESUMEN

We report a simple and environmentally friendly route to prepare platinum/reduced graphene oxide (Pt/rGO) nanocomposites (NCs) with highly reactive MnOx colloids as reducing agents and sacrificial templates. The colloids are obtained by laser ablation of a metallic Mn target in graphene oxide (GO)-containing solution. Structural and morphological investigations of the as-prepared NCs revealed that ultrafine Pt nanoparticles (NPs) with an average size of 1.8 (±0.6) nm are uniformly dispersed on the surfaces of rGO nanosheets. Compared with commercial Pt/C catalysts, Pt/rGO NCs with highly electrochemically active surface areas show remarkably improved catalytic activity and durability toward methanol oxidation. All of these superior characteristics can be attributed to the small particle size and uniform distribution of the Pt NPs, as well as the excellent electrical conductivity and stability of the rGO catalyst support. These findings suggest that Pt/rGO electrocatalysts are promising candidate materials for practical use in fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...